codex-5.2: ресурсы

This commit is contained in:
2026-01-01 02:13:01 +06:00
parent d47a5cc090
commit 4aa7c6f41a
52 changed files with 5787 additions and 912 deletions

View File

@@ -0,0 +1,198 @@
#include "PipelinedTextureAtlas.hpp"
PipelinedTextureAtlas::PipelinedTextureAtlas(TextureAtlas&& tk)
: Super(std::move(tk)) {}
PipelinedTextureAtlas::AtlasTextureId PipelinedTextureAtlas::getByPipeline(const HashedPipeline& pipeline) {
auto iter = _PipeToTexId.find(pipeline);
if (iter == _PipeToTexId.end()) {
AtlasTextureId atlasTexId = Super.registerTexture();
_PipeToTexId.insert({pipeline, atlasTexId});
_ChangedPipelines.push_back(pipeline);
for (uint32_t texId : pipeline.getDependencedTextures()) {
_AddictedTextures[texId].push_back(pipeline);
}
return atlasTexId;
}
return iter->second;
}
void PipelinedTextureAtlas::freeByPipeline(const HashedPipeline& pipeline) {
auto iter = _PipeToTexId.find(pipeline);
if (iter == _PipeToTexId.end()) {
return;
}
for (uint32_t texId : pipeline.getDependencedTextures()) {
auto iterAT = _AddictedTextures.find(texId);
assert(iterAT != _AddictedTextures.end());
auto iterATSub = std::find(iterAT->second.begin(), iterAT->second.end(), pipeline);
assert(iterATSub != iterAT->second.end());
iterAT->second.erase(iterATSub);
}
Super.removeTexture(iter->second);
_AtlasCpuTextures.erase(iter->second);
_PipeToTexId.erase(iter);
}
void PipelinedTextureAtlas::updateTexture(uint32_t texId, const StoredTexture& texture) {
_ResToTexture[texId] = texture;
_ChangedTextures.push_back(texId);
}
void PipelinedTextureAtlas::updateTexture(uint32_t texId, StoredTexture&& texture) {
_ResToTexture[texId] = std::move(texture);
_ChangedTextures.push_back(texId);
}
void PipelinedTextureAtlas::freeTexture(uint32_t texId) {
auto iter = _ResToTexture.find(texId);
if (iter != _ResToTexture.end()) {
_ResToTexture.erase(iter);
}
}
bool PipelinedTextureAtlas::getHostTexture(TextureId texId, HostTextureView& out) const {
auto fill = [&](const StoredTexture& tex) -> bool {
if (tex._Pixels.empty() || tex._Widht == 0 || tex._Height == 0) {
return false;
}
out.width = tex._Widht;
out.height = tex._Height;
out.rowPitchBytes = static_cast<uint32_t>(tex._Widht) * 4u;
out.pixelsRGBA8 = reinterpret_cast<const uint8_t*>(tex._Pixels.data());
return true;
};
auto it = _ResToTexture.find(texId);
if (it != _ResToTexture.end() && fill(it->second)) {
return true;
}
auto itAtlas = _AtlasCpuTextures.find(texId);
if (itAtlas != _AtlasCpuTextures.end() && fill(itAtlas->second)) {
return true;
}
return false;
}
StoredTexture PipelinedTextureAtlas::_generatePipelineTexture(const HashedPipeline& pipeline) {
std::vector<detail::Word> words(pipeline._Pipeline.begin(), pipeline._Pipeline.end());
if (words.empty()) {
if (auto tex = tryCopyFirstDependencyTexture(pipeline)) {
return *tex;
}
return makeSolidColorTexture(0xFFFF00FFu);
}
TexturePipelineProgram program;
program.fromWords(std::move(words));
TexturePipelineProgram::OwnedTexture baked;
auto provider = [this](uint32_t texId) -> std::optional<Texture> {
auto iter = _ResToTexture.find(texId);
if (iter == _ResToTexture.end()) {
return std::nullopt;
}
const StoredTexture& stored = iter->second;
if (stored._Pixels.empty() || stored._Widht == 0 || stored._Height == 0) {
return std::nullopt;
}
Texture tex{};
tex.Width = stored._Widht;
tex.Height = stored._Height;
tex.Pixels = stored._Pixels.data();
return tex;
};
if (!program.bake(provider, baked, nullptr)) {
if (auto tex = tryCopyFirstDependencyTexture(pipeline)) {
return *tex;
}
return makeSolidColorTexture(0xFFFF00FFu);
}
const uint32_t width = baked.Width;
const uint32_t height = baked.Height;
if (width == 0 || height == 0 ||
width > std::numeric_limits<uint16_t>::max() ||
height > std::numeric_limits<uint16_t>::max() ||
baked.Pixels.size() != static_cast<size_t>(width) * static_cast<size_t>(height)) {
if (auto tex = tryCopyFirstDependencyTexture(pipeline)) {
return *tex;
}
return makeSolidColorTexture(0xFFFF00FFu);
}
return StoredTexture(static_cast<uint16_t>(width),
static_cast<uint16_t>(height),
std::move(baked.Pixels));
}
void PipelinedTextureAtlas::flushNewPipelines() {
std::vector<uint32_t> changedTextures = std::move(_ChangedTextures);
std::sort(changedTextures.begin(), changedTextures.end());
changedTextures.erase(std::unique(changedTextures.begin(), changedTextures.end()), changedTextures.end());
std::vector<HashedPipeline> changedPipelineTextures;
for (uint32_t texId : changedTextures) {
auto iter = _AddictedTextures.find(texId);
if (iter == _AddictedTextures.end()) {
continue;
}
changedPipelineTextures.append_range(iter->second);
}
changedPipelineTextures.append_range(std::move(_ChangedPipelines));
changedTextures.clear();
std::sort(changedPipelineTextures.begin(), changedPipelineTextures.end());
changedPipelineTextures.erase(std::unique(changedPipelineTextures.begin(), changedPipelineTextures.end()),
changedPipelineTextures.end());
for (const HashedPipeline& pipeline : changedPipelineTextures) {
auto iterPTTI = _PipeToTexId.find(pipeline);
assert(iterPTTI != _PipeToTexId.end());
StoredTexture texture = _generatePipelineTexture(pipeline);
AtlasTextureId atlasTexId = iterPTTI->second;
auto& stored = _AtlasCpuTextures[atlasTexId];
stored = std::move(texture);
if (!stored._Pixels.empty()) {
Super.setTextureData(atlasTexId,
stored._Widht,
stored._Height,
stored._Pixels.data(),
stored._Widht * 4u);
}
}
}
TextureAtlas::DescriptorOut PipelinedTextureAtlas::flushUploadsAndBarriers(VkCommandBuffer cmdBuffer) {
return Super.flushUploadsAndBarriers(cmdBuffer);
}
void PipelinedTextureAtlas::notifyGpuFinished() {
Super.notifyGpuFinished();
}
std::optional<StoredTexture> PipelinedTextureAtlas::tryCopyFirstDependencyTexture(const HashedPipeline& pipeline) const {
auto deps = pipeline.getDependencedTextures();
if (!deps.empty()) {
auto iter = _ResToTexture.find(deps.front());
if (iter != _ResToTexture.end()) {
return iter->second;
}
}
return std::nullopt;
}
StoredTexture PipelinedTextureAtlas::makeSolidColorTexture(uint32_t rgba) {
return StoredTexture(1, 1, std::vector<uint32_t>{rgba});
}

View File

@@ -0,0 +1,380 @@
#pragma once
#include "TextureAtlas.hpp"
#include "TexturePipelineProgram.hpp"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <optional>
#include <unordered_map>
#include <utility>
#include <vector>
#include "boost/container/small_vector.hpp"
using TextureId = uint32_t;
namespace detail {
using Word = TexturePipelineProgram::Word;
enum class Op16 : Word {
End = 0,
Base_Tex = 1,
Base_Fill = 2,
Resize = 10,
Transform = 11,
Opacity = 12,
NoAlpha = 13,
MakeAlpha = 14,
Invert = 15,
Brighten = 16,
Contrast = 17,
Multiply = 18,
Screen = 19,
Colorize = 20,
Overlay = 30,
Mask = 31,
LowPart = 32,
Combine = 40
};
enum class SrcKind16 : Word { TexId = 0, Sub = 1 };
struct SrcRef16 {
SrcKind16 kind{SrcKind16::TexId};
Word a = 0;
Word b = 0;
};
inline uint32_t makeU32(Word lo, Word hi) {
return uint32_t(lo) | (uint32_t(hi) << 16);
}
inline void addUniqueDep(boost::container::small_vector<uint32_t, 8>& deps, uint32_t id) {
if (id == TextureAtlas::kOverflowId) {
return;
}
if (std::find(deps.begin(), deps.end(), id) == deps.end()) {
deps.push_back(id);
}
}
inline bool readSrc(const std::vector<Word>& words, size_t end, size_t& ip, SrcRef16& out) {
if (ip + 2 >= end) {
return false;
}
out.kind = static_cast<SrcKind16>(words[ip++]);
out.a = words[ip++];
out.b = words[ip++];
return true;
}
inline void extractPipelineDependencies(const std::vector<Word>& words,
size_t start,
size_t end,
boost::container::small_vector<uint32_t, 8>& deps,
std::vector<std::pair<size_t, size_t>>& visited) {
if (start >= end || end > words.size()) {
return;
}
const std::pair<size_t, size_t> key{start, end};
if (std::find(visited.begin(), visited.end(), key) != visited.end()) {
return;
}
visited.push_back(key);
size_t ip = start;
auto need = [&](size_t n) { return ip + n <= end; };
auto handleSrc = [&](const SrcRef16& src) {
if (src.kind == SrcKind16::TexId) {
addUniqueDep(deps, makeU32(src.a, src.b));
return;
}
if (src.kind == SrcKind16::Sub) {
size_t subStart = static_cast<size_t>(src.a);
size_t subEnd = subStart + static_cast<size_t>(src.b);
if (subStart < subEnd && subEnd <= words.size()) {
extractPipelineDependencies(words, subStart, subEnd, deps, visited);
}
}
};
while (ip < end) {
if (!need(1)) break;
Op16 op = static_cast<Op16>(words[ip++]);
switch (op) {
case Op16::End:
return;
case Op16::Base_Tex: {
if (!need(3)) return;
SrcRef16 src{};
if (!readSrc(words, end, ip, src)) return;
handleSrc(src);
} break;
case Op16::Base_Fill:
if (!need(4)) return;
ip += 4;
break;
case Op16::Overlay:
case Op16::Mask: {
if (!need(3)) return;
SrcRef16 src{};
if (!readSrc(words, end, ip, src)) return;
handleSrc(src);
} break;
case Op16::LowPart: {
if (!need(1 + 3)) return;
ip += 1; // percent
SrcRef16 src{};
if (!readSrc(words, end, ip, src)) return;
handleSrc(src);
} break;
case Op16::Resize:
if (!need(2)) return;
ip += 2;
break;
case Op16::Transform:
case Op16::Opacity:
if (!need(1)) return;
ip += 1;
break;
case Op16::NoAlpha:
case Op16::Brighten:
break;
case Op16::MakeAlpha:
if (!need(2)) return;
ip += 2;
break;
case Op16::Invert:
if (!need(1)) return;
ip += 1;
break;
case Op16::Contrast:
if (!need(2)) return;
ip += 2;
break;
case Op16::Multiply:
case Op16::Screen:
if (!need(2)) return;
ip += 2;
break;
case Op16::Colorize:
if (!need(3)) return;
ip += 3;
break;
case Op16::Combine: {
if (!need(3)) return;
ip += 2; // skip w,h
uint32_t n = words[ip++];
for (uint32_t i = 0; i < n; ++i) {
if (!need(2 + 3)) return;
ip += 2; // x, y
SrcRef16 src{};
if (!readSrc(words, end, ip, src)) return;
handleSrc(src);
}
} break;
default:
return;
}
}
}
inline boost::container::small_vector<uint32_t, 8> extractPipelineDependencies(const std::vector<Word>& words) {
boost::container::small_vector<uint32_t, 8> deps;
std::vector<std::pair<size_t, size_t>> visited;
extractPipelineDependencies(words, 0, words.size(), deps, visited);
return deps;
}
inline boost::container::small_vector<uint32_t, 8> extractPipelineDependencies(const boost::container::small_vector<Word, 32>& words) {
boost::container::small_vector<uint32_t, 8> deps;
std::vector<std::pair<size_t, size_t>> visited;
std::vector<Word> copy(words.begin(), words.end());
extractPipelineDependencies(copy, 0, copy.size(), deps, visited);
return deps;
}
} // namespace detail
// Структура нехешированного пайплайна
struct Pipeline {
std::vector<detail::Word> _Pipeline;
Pipeline() = default;
explicit Pipeline(const TexturePipelineProgram& program)
: _Pipeline(program.words().begin(), program.words().end())
{
}
Pipeline(TextureId texId) {
_Pipeline = {
static_cast<detail::Word>(detail::Op16::Base_Tex),
static_cast<detail::Word>(detail::SrcKind16::TexId),
static_cast<detail::Word>(texId & 0xFFFFu),
static_cast<detail::Word>((texId >> 16) & 0xFFFFu),
static_cast<detail::Word>(detail::Op16::End)
};
}
};
// Структура хешированного текстурного пайплайна
struct HashedPipeline {
// Предвычисленный хеш
std::size_t _Hash;
boost::container::small_vector<detail::Word, 32> _Pipeline;
HashedPipeline() = default;
HashedPipeline(const Pipeline& pipeline) noexcept
: _Pipeline(pipeline._Pipeline.begin(), pipeline._Pipeline.end())
{
reComputeHash();
}
// Перевычисляет хеш
void reComputeHash() noexcept {
std::size_t hash = 14695981039346656037ull;
constexpr std::size_t prime = 1099511628211ull;
for(detail::Word w : _Pipeline) {
hash ^= static_cast<uint8_t>(w & 0xFF);
hash *= prime;
hash ^= static_cast<uint8_t>((w >> 8) & 0xFF);
hash *= prime;
}
_Hash = hash;
}
// Выдаёт список зависимых текстур, на основе которых строится эта
boost::container::small_vector<uint32_t, 8> getDependencedTextures() const {
return detail::extractPipelineDependencies(_Pipeline);
}
bool operator==(const HashedPipeline& obj) const noexcept {
return _Hash == obj._Hash && _Pipeline == obj._Pipeline;
}
bool operator<(const HashedPipeline& obj) const noexcept {
return _Hash < obj._Hash || (_Hash == obj._Hash && _Pipeline < obj._Pipeline);
}
};
struct StoredTexture {
uint16_t _Widht = 0;
uint16_t _Height = 0;
std::vector<uint32_t> _Pixels;
StoredTexture() = default;
StoredTexture(uint16_t w, uint16_t h, std::vector<uint32_t> pixels)
: _Widht(w), _Height(h), _Pixels(std::move(pixels))
{
}
};
// Пайплайновый текстурный атлас
class PipelinedTextureAtlas {
public:
using AtlasTextureId = uint32_t;
struct HostTextureView {
uint32_t width = 0;
uint32_t height = 0;
uint32_t rowPitchBytes = 0;
const uint8_t* pixelsRGBA8 = nullptr;
};
private:
// Функтор хеша
struct HashedPipelineKeyHash {
std::size_t operator()(const HashedPipeline& k) const noexcept {
return k._Hash;
}
};
// Функтор равенства
struct HashedPipelineKeyEqual {
bool operator()(const HashedPipeline& a, const HashedPipeline& b) const noexcept {
return a._Pipeline == b._Pipeline;
}
};
// Текстурный атлас
TextureAtlas Super;
// Пустой пайплайн (указывающий на одну текстуру) ссылается на простой идентификатор (ResToAtlas)
std::unordered_map<HashedPipeline, AtlasTextureId, HashedPipelineKeyHash, HashedPipelineKeyEqual> _PipeToTexId;
// Загруженные текстуры
std::unordered_map<TextureId, StoredTexture> _ResToTexture;
std::unordered_map<AtlasTextureId, StoredTexture> _AtlasCpuTextures;
// Список зависимых пайплайнов от текстур (при изменении текстуры, нужно перерисовать пайплайны)
std::unordered_map<TextureId, boost::container::small_vector<HashedPipeline, 8>> _AddictedTextures;
// Изменённые простые текстуры (для последующего массового обновление пайплайнов)
std::vector<uint32_t> _ChangedTextures;
// Необходимые к созданию/обновлению пайплайны
std::vector<HashedPipeline> _ChangedPipelines;
public:
PipelinedTextureAtlas(TextureAtlas&& tk);
uint32_t atlasSide() const {
return Super.atlasSide();
}
uint32_t atlasLayers() const {
return Super.atlasLayers();
}
uint32_t AtlasSide() const {
return atlasSide();
}
uint32_t AtlasLayers() const {
return atlasLayers();
}
// Должны всегда бронировать идентификатор, либо отдавать kOverflowId. При этом запись tex+pipeline остаётся
// Выдаёт стабильный идентификатор, привязанный к пайплайну
AtlasTextureId getByPipeline(const HashedPipeline& pipeline);
// Уведомить что текстура+pipeline более не используются (идентификатор будет освобождён)
// Освобождать можно при потере ресурсов
void freeByPipeline(const HashedPipeline& pipeline);
void updateTexture(uint32_t texId, const StoredTexture& texture);
void updateTexture(uint32_t texId, StoredTexture&& texture);
void freeTexture(uint32_t texId);
bool getHostTexture(TextureId texId, HostTextureView& out) const;
// Генерация текстуры пайплайна
StoredTexture _generatePipelineTexture(const HashedPipeline& pipeline);
// Обновляет пайплайны по необходимости
void flushNewPipelines();
TextureAtlas::DescriptorOut flushUploadsAndBarriers(VkCommandBuffer cmdBuffer);
void notifyGpuFinished();
private:
std::optional<StoredTexture> tryCopyFirstDependencyTexture(const HashedPipeline& pipeline) const;
static StoredTexture makeSolidColorTexture(uint32_t rgba);
};

View File

@@ -0,0 +1,169 @@
#pragma once
#include <vulkan/vulkan.h>
#include <cstdint>
#include <optional>
#include <stdexcept>
#include <utility>
/*
Межкадровый промежуточный буфер.
Для модели рендера Один за одним.
После окончания рендера кадра считается синхронизированным
и может заполняться по новой.
*/
class SharedStagingBuffer {
public:
static constexpr VkDeviceSize kDefaultSize = 64ull * 1024ull * 1024ull;
SharedStagingBuffer(VkDevice device,
VkPhysicalDevice physicalDevice,
VkDeviceSize sizeBytes = kDefaultSize)
: device_(device),
physicalDevice_(physicalDevice),
size_(sizeBytes) {
if (!device_ || !physicalDevice_) {
throw std::runtime_error("SharedStagingBuffer: null device/physicalDevice");
}
if (size_ == 0) {
throw std::runtime_error("SharedStagingBuffer: size must be > 0");
}
VkBufferCreateInfo bi{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = size_,
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr
};
if (vkCreateBuffer(device_, &bi, nullptr, &buffer_) != VK_SUCCESS) {
throw std::runtime_error("SharedStagingBuffer: vkCreateBuffer failed");
}
VkMemoryRequirements mr{};
vkGetBufferMemoryRequirements(device_, buffer_, &mr);
VkMemoryAllocateInfo ai{};
ai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
ai.allocationSize = mr.size;
ai.memoryTypeIndex = FindMemoryType_(mr.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
if (vkAllocateMemory(device_, &ai, nullptr, &memory_) != VK_SUCCESS) {
vkDestroyBuffer(device_, buffer_, nullptr);
buffer_ = VK_NULL_HANDLE;
throw std::runtime_error("SharedStagingBuffer: vkAllocateMemory failed");
}
vkBindBufferMemory(device_, buffer_, memory_, 0);
if (vkMapMemory(device_, memory_, 0, VK_WHOLE_SIZE, 0, &mapped_) != VK_SUCCESS) {
vkFreeMemory(device_, memory_, nullptr);
vkDestroyBuffer(device_, buffer_, nullptr);
buffer_ = VK_NULL_HANDLE;
memory_ = VK_NULL_HANDLE;
throw std::runtime_error("SharedStagingBuffer: vkMapMemory failed");
}
}
~SharedStagingBuffer() { Destroy_(); }
SharedStagingBuffer(const SharedStagingBuffer&) = delete;
SharedStagingBuffer& operator=(const SharedStagingBuffer&) = delete;
SharedStagingBuffer(SharedStagingBuffer&& other) noexcept {
*this = std::move(other);
}
SharedStagingBuffer& operator=(SharedStagingBuffer&& other) noexcept {
if (this != &other) {
Destroy_();
device_ = other.device_;
physicalDevice_ = other.physicalDevice_;
buffer_ = other.buffer_;
memory_ = other.memory_;
mapped_ = other.mapped_;
size_ = other.size_;
offset_ = other.offset_;
other.device_ = VK_NULL_HANDLE;
other.physicalDevice_ = VK_NULL_HANDLE;
other.buffer_ = VK_NULL_HANDLE;
other.memory_ = VK_NULL_HANDLE;
other.mapped_ = nullptr;
other.size_ = 0;
other.offset_ = 0;
}
return *this;
}
VkBuffer Buffer() const { return buffer_; }
void* Mapped() const { return mapped_; }
VkDeviceSize Size() const { return size_; }
std::optional<VkDeviceSize> Allocate(VkDeviceSize bytes, VkDeviceSize alignment) {
VkDeviceSize off = Align_(offset_, alignment);
if (off + bytes > size_) {
return std::nullopt;
}
offset_ = off + bytes;
return off;
}
void Reset() { offset_ = 0; }
private:
uint32_t FindMemoryType_(uint32_t typeBits, VkMemoryPropertyFlags properties) const {
VkPhysicalDeviceMemoryProperties mp{};
vkGetPhysicalDeviceMemoryProperties(physicalDevice_, &mp);
for (uint32_t i = 0; i < mp.memoryTypeCount; ++i) {
if ((typeBits & (1u << i)) &&
(mp.memoryTypes[i].propertyFlags & properties) == properties) {
return i;
}
}
throw std::runtime_error("SharedStagingBuffer: no suitable memory type");
}
static VkDeviceSize Align_(VkDeviceSize value, VkDeviceSize alignment) {
if (alignment == 0) return value;
return (value + alignment - 1) & ~(alignment - 1);
}
void Destroy_() {
if (device_ == VK_NULL_HANDLE) {
return;
}
if (mapped_) {
vkUnmapMemory(device_, memory_);
mapped_ = nullptr;
}
if (buffer_) {
vkDestroyBuffer(device_, buffer_, nullptr);
buffer_ = VK_NULL_HANDLE;
}
if (memory_) {
vkFreeMemory(device_, memory_, nullptr);
memory_ = VK_NULL_HANDLE;
}
size_ = 0;
offset_ = 0;
device_ = VK_NULL_HANDLE;
physicalDevice_ = VK_NULL_HANDLE;
}
VkDevice device_ = VK_NULL_HANDLE;
VkPhysicalDevice physicalDevice_ = VK_NULL_HANDLE;
VkBuffer buffer_ = VK_NULL_HANDLE;
VkDeviceMemory memory_ = VK_NULL_HANDLE;
void* mapped_ = nullptr;
VkDeviceSize size_ = 0;
VkDeviceSize offset_ = 0;
};

View File

@@ -0,0 +1,477 @@
#include "TextureAtlas.hpp"
TextureAtlas::TextureAtlas(VkDevice device,
VkPhysicalDevice physicalDevice,
const Config& cfg,
EventCallback cb,
std::shared_ptr<SharedStagingBuffer> staging)
: Device_(device),
Phys_(physicalDevice),
Cfg_(cfg),
OnEvent_(std::move(cb)),
Staging_(std::move(staging)) {
if(!Device_ || !Phys_) {
throw std::runtime_error("TextureAtlas: device/physicalDevice == null");
}
_validateConfigOrThrow();
VkPhysicalDeviceProperties props{};
vkGetPhysicalDeviceProperties(Phys_, &props);
CopyOffsetAlignment_ = std::max<VkDeviceSize>(4, props.limits.optimalBufferCopyOffsetAlignment);
if(!Staging_) {
Staging_ = std::make_shared<SharedStagingBuffer>(Device_, Phys_, kStagingSizeBytes);
}
_validateStagingCapacityOrThrow();
_createEntriesBufferOrThrow();
_createAtlasOrThrow(Cfg_.InitialSide, 1);
EntriesCpu_.resize(Cfg_.MaxTextureId);
std::memset(EntriesCpu_.data(), 0, EntriesCpu_.size() * sizeof(Entry));
EntriesDirty_ = true;
Slots_.resize(Cfg_.MaxTextureId);
FreeIds_.reserve(Cfg_.MaxTextureId);
PendingInQueue_.assign(Cfg_.MaxTextureId, false);
if(Cfg_.ExternalSampler != VK_NULL_HANDLE) {
Sampler_ = Cfg_.ExternalSampler;
OwnsSampler_ = false;
} else {
_createSamplerOrThrow();
OwnsSampler_ = true;
}
_rebuildPackersFromPlacements();
Alive_ = true;
}
TextureAtlas::~TextureAtlas() { _shutdownNoThrow(); }
TextureAtlas::TextureAtlas(TextureAtlas&& other) noexcept {
_moveFrom(std::move(other));
}
TextureAtlas& TextureAtlas::operator=(TextureAtlas&& other) noexcept {
if(this != &other) {
_shutdownNoThrow();
_moveFrom(std::move(other));
}
return *this;
}
void TextureAtlas::shutdown() {
_ensureAliveOrThrow();
_shutdownNoThrow();
}
TextureAtlas::TextureId TextureAtlas::registerTexture() {
_ensureAliveOrThrow();
TextureId id = kOverflowId;
if(!FreeIds_.empty()) {
id = FreeIds_.back();
FreeIds_.pop_back();
} else if(NextId_ < Cfg_.MaxTextureId) {
id = NextId_++;
} else {
return kOverflowId;
}
Slot& s = Slots_[id];
s = Slot{};
s.InUse = true;
s.StateValue = State::REGISTERED;
s.Generation = 1;
_setEntryInvalid(id, /*diagPending*/false, /*diagTooLarge*/false);
EntriesDirty_ = true;
return id;
}
void TextureAtlas::setTextureData(TextureId id,
uint32_t w,
uint32_t h,
const void* pixelsRGBA8,
uint32_t rowPitchBytes) {
_ensureAliveOrThrow();
if(id == kOverflowId) return;
_ensureRegisteredIdOrThrow(id);
if(w == 0 || h == 0) {
throw _inputError("setTextureData: w/h must be > 0");
}
if(w > Cfg_.MaxTextureSize || h > Cfg_.MaxTextureSize) {
_handleTooLarge(id);
throw _inputError("setTextureData: texture is TOO_LARGE (>2048)");
}
if(!pixelsRGBA8) {
throw _inputError("setTextureData: pixelsRGBA8 == null");
}
if(rowPitchBytes == 0) {
rowPitchBytes = w * 4;
}
if(rowPitchBytes < w * 4) {
throw _inputError("setTextureData: rowPitchBytes < w*4");
}
Slot& s = Slots_[id];
const bool sizeChanged = (s.HasCpuData && (s.W != w || s.H != h));
if(sizeChanged) {
_freePlacement(id);
_setEntryInvalid(id, /*diagPending*/true, /*diagTooLarge*/false);
EntriesDirty_ = true;
}
s.W = w;
s.H = h;
s.CpuPixels = static_cast<const uint8_t*>(pixelsRGBA8);
s.CpuRowPitchBytes = rowPitchBytes;
s.HasCpuData = true;
s.StateValue = State::PENDING_UPLOAD;
s.Generation++;
if(!sizeChanged && s.HasPlacement && s.StateWasValid) {
// keep entry valid
} else if(!s.HasPlacement) {
_setEntryInvalid(id, /*diagPending*/true, /*diagTooLarge*/false);
EntriesDirty_ = true;
}
_enqueuePending(id);
if(Repack_.Active && Repack_.Plan.count(id) != 0) {
_enqueueRepackPending(id);
}
}
void TextureAtlas::clearTextureData(TextureId id) {
_ensureAliveOrThrow();
if(id == kOverflowId) return;
_ensureRegisteredIdOrThrow(id);
Slot& s = Slots_[id];
s.CpuPixels = nullptr;
s.CpuRowPitchBytes = 0;
s.HasCpuData = false;
_freePlacement(id);
s.StateValue = State::REGISTERED;
s.StateWasValid = false;
_removeFromPending(id);
_removeFromRepackPending(id);
_setEntryInvalid(id, /*diagPending*/false, /*diagTooLarge*/false);
EntriesDirty_ = true;
}
void TextureAtlas::removeTexture(TextureId id) {
_ensureAliveOrThrow();
if(id == kOverflowId) return;
_ensureRegisteredIdOrThrow(id);
Slot& s = Slots_[id];
clearTextureData(id);
s.InUse = false;
s.StateValue = State::REMOVED;
FreeIds_.push_back(id);
_setEntryInvalid(id, /*diagPending*/false, /*diagTooLarge*/false);
EntriesDirty_ = true;
}
void TextureAtlas::requestFullRepack(RepackMode mode) {
_ensureAliveOrThrow();
Repack_.Requested = true;
Repack_.Mode = mode;
}
TextureAtlas::DescriptorOut TextureAtlas::flushUploadsAndBarriers(VkCommandBuffer cmdBuffer) {
_ensureAliveOrThrow();
if(cmdBuffer == VK_NULL_HANDLE) {
throw _inputError("flushUploadsAndBarriers: cmdBuffer == null");
}
if(Repack_.SwapReady) {
_swapToRepackedAtlas();
}
if(Repack_.Requested && !Repack_.Active) {
_startRepackIfPossible();
}
_processPendingLayerGrow(cmdBuffer);
bool willTouchEntries = EntriesDirty_;
auto collectQueue = [this](std::deque<TextureId>& queue,
std::vector<bool>& inQueue,
std::vector<TextureId>& out) {
while (!queue.empty()) {
TextureId id = queue.front();
queue.pop_front();
if(id == kOverflowId || id >= inQueue.size()) {
continue;
}
if(!inQueue[id]) {
continue;
}
inQueue[id] = false;
out.push_back(id);
}
};
std::vector<TextureId> pendingNow;
pendingNow.reserve(Pending_.size());
collectQueue(Pending_, PendingInQueue_, pendingNow);
std::vector<TextureId> repackPending;
if(Repack_.Active) {
if(Repack_.InPending.empty()) {
Repack_.InPending.assign(Cfg_.MaxTextureId, false);
}
collectQueue(Repack_.Pending, Repack_.InPending, repackPending);
}
auto processPlacement = [&](TextureId id, Slot& s) -> bool {
if(s.HasPlacement) return true;
const uint32_t wP = s.W + 2u * Cfg_.PaddingPx;
const uint32_t hP = s.H + 2u * Cfg_.PaddingPx;
if(!_tryPlaceWithGrow(id, wP, hP, cmdBuffer)) {
return false;
}
willTouchEntries = true;
return true;
};
bool outOfSpace = false;
for(TextureId id : pendingNow) {
if(id == kOverflowId) continue;
if(id >= Slots_.size()) continue;
Slot& s = Slots_[id];
if(!s.InUse || !s.HasCpuData) continue;
if(!processPlacement(id, s)) {
outOfSpace = true;
_enqueuePending(id);
}
}
if(outOfSpace) {
_emitEventOncePerFlush(AtlasEvent::AtlasOutOfSpace);
}
bool anyAtlasWrites = false;
bool anyRepackWrites = false;
auto uploadTextureIntoAtlas = [&](Slot& s,
const Placement& pp,
ImageRes& targetAtlas,
bool isRepackTarget) {
const uint32_t wP = pp.WP;
const uint32_t hP = pp.HP;
const VkDeviceSize bytes = static_cast<VkDeviceSize>(wP) * hP * 4u;
auto stagingOff = Staging_->Allocate(bytes, CopyOffsetAlignment_);
if(!stagingOff) {
_emitEventOncePerFlush(AtlasEvent::StagingOverflow);
return false;
}
uint8_t* dst = static_cast<uint8_t*>(Staging_->Mapped()) + *stagingOff;
if(!s.CpuPixels) {
return false;
}
_writePaddedRGBA8(dst, wP * 4u, s.W, s.H, Cfg_.PaddingPx,
s.CpuPixels, s.CpuRowPitchBytes);
_ensureImageLayoutForTransferDst(cmdBuffer, targetAtlas,
isRepackTarget ? anyRepackWrites : anyAtlasWrites);
VkBufferImageCopy region{};
region.bufferOffset = *stagingOff;
region.bufferRowLength = wP;
region.bufferImageHeight = hP;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.mipLevel = 0;
region.imageSubresource.baseArrayLayer = pp.Layer;
region.imageSubresource.layerCount = 1;
region.imageOffset = { static_cast<int32_t>(pp.X),
static_cast<int32_t>(pp.Y), 0 };
region.imageExtent = { wP, hP, 1 };
vkCmdCopyBufferToImage(cmdBuffer, Staging_->Buffer(), targetAtlas.Image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
return true;
};
for(TextureId id : pendingNow) {
if(id == kOverflowId) continue;
Slot& s = Slots_[id];
if(!s.InUse || !s.HasCpuData || !s.HasPlacement) continue;
if(!uploadTextureIntoAtlas(s, s.Place, Atlas_, false)) {
_enqueuePending(id);
continue;
}
s.StateValue = State::VALID;
s.StateWasValid = true;
_setEntryValid(id);
EntriesDirty_ = true;
}
if(Repack_.Active) {
for(TextureId id : repackPending) {
if(Repack_.Plan.count(id) == 0) continue;
Slot& s = Slots_[id];
if(!s.InUse || !s.HasCpuData) continue;
const PlannedPlacement& pp = Repack_.Plan[id];
Placement place{pp.X, pp.Y, pp.WP, pp.HP, pp.Layer};
if(!uploadTextureIntoAtlas(s, place, Repack_.Atlas, true)) {
_enqueueRepackPending(id);
continue;
}
Repack_.WroteSomethingThisFlush = true;
}
}
if(willTouchEntries || EntriesDirty_) {
const VkDeviceSize entriesBytes = static_cast<VkDeviceSize>(EntriesCpu_.size()) * sizeof(Entry);
auto off = Staging_->Allocate(entriesBytes, CopyOffsetAlignment_);
if(!off) {
_emitEventOncePerFlush(AtlasEvent::StagingOverflow);
} else {
std::memcpy(static_cast<uint8_t*>(Staging_->Mapped()) + *off,
EntriesCpu_.data(),
static_cast<size_t>(entriesBytes));
VkBufferCopy c{};
c.srcOffset = *off;
c.dstOffset = 0;
c.size = entriesBytes;
vkCmdCopyBuffer(cmdBuffer, Staging_->Buffer(), Entries_.Buffer, 1, &c);
VkBufferMemoryBarrier b{};
b.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
b.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
b.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
b.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
b.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
b.buffer = Entries_.Buffer;
b.offset = 0;
b.size = VK_WHOLE_SIZE;
vkCmdPipelineBarrier(cmdBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
0, 0, nullptr, 1, &b, 0, nullptr);
EntriesDirty_ = false;
}
}
if(anyAtlasWrites) {
_transitionImage(cmdBuffer, Atlas_,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
} else if(Atlas_.Layout == VK_IMAGE_LAYOUT_UNDEFINED) {
_transitionImage(cmdBuffer, Atlas_,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
0, VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
}
if(anyRepackWrites) {
_transitionImage(cmdBuffer, Repack_.Atlas,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
}
if(Repack_.Active) {
if(Repack_.Pending.empty()) {
Repack_.WaitingGpuForReady = true;
}
Repack_.WroteSomethingThisFlush = false;
}
return _buildDescriptorOut();
}
void TextureAtlas::notifyGpuFinished() {
_ensureAliveOrThrow();
for(auto& img : DeferredImages_) {
_destroyImage(img);
}
DeferredImages_.clear();
if(Staging_) {
Staging_->Reset();
}
FlushEventMask_ = 0;
if(Repack_.Active && Repack_.WaitingGpuForReady && Repack_.Pending.empty()) {
Repack_.SwapReady = true;
Repack_.WaitingGpuForReady = false;
}
}
void TextureAtlas::_moveFrom(TextureAtlas&& other) noexcept {
Device_ = other.Device_;
Phys_ = other.Phys_;
Cfg_ = other.Cfg_;
OnEvent_ = std::move(other.OnEvent_);
Alive_ = other.Alive_;
CopyOffsetAlignment_ = other.CopyOffsetAlignment_;
Staging_ = std::move(other.Staging_);
Entries_ = other.Entries_;
Atlas_ = other.Atlas_;
Sampler_ = other.Sampler_;
OwnsSampler_ = other.OwnsSampler_;
EntriesCpu_ = std::move(other.EntriesCpu_);
EntriesDirty_ = other.EntriesDirty_;
Slots_ = std::move(other.Slots_);
FreeIds_ = std::move(other.FreeIds_);
NextId_ = other.NextId_;
Pending_ = std::move(other.Pending_);
PendingInQueue_ = std::move(other.PendingInQueue_);
Packers_ = std::move(other.Packers_);
DeferredImages_ = std::move(other.DeferredImages_);
FlushEventMask_ = other.FlushEventMask_;
GrewThisFlush_ = other.GrewThisFlush_;
Repack_ = std::move(other.Repack_);
other.Device_ = VK_NULL_HANDLE;
other.Phys_ = VK_NULL_HANDLE;
other.OnEvent_ = {};
other.Alive_ = false;
other.CopyOffsetAlignment_ = 0;
other.Staging_.reset();
other.Entries_ = {};
other.Atlas_ = {};
other.Sampler_ = VK_NULL_HANDLE;
other.OwnsSampler_ = false;
other.EntriesCpu_.clear();
other.EntriesDirty_ = false;
other.Slots_.clear();
other.FreeIds_.clear();
other.NextId_ = 0;
other.Pending_.clear();
other.PendingInQueue_.clear();
other.Packers_.clear();
other.DeferredImages_.clear();
other.FlushEventMask_ = 0;
other.GrewThisFlush_ = false;
other.Repack_ = RepackState{};
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff