codex-5.2: ресурсы

This commit is contained in:
2026-01-01 02:13:01 +06:00
parent d47a5cc090
commit 4aa7c6f41a
52 changed files with 5787 additions and 912 deletions

View File

@@ -35,11 +35,11 @@ struct VoxelVertexPoint {
struct NodeVertexStatic { struct NodeVertexStatic {
uint32_t uint32_t
FX : 9, FY : 9, FZ : 9, // Позиция -224 ~ 288; 64 позиций в одной ноде, 7.5 метров в ряд FX : 11, FY : 11, N1 : 10, // Позиция, 64 позиции на метр, +3.5м запас
N1 : 4, // Не занято FZ : 11, // Позиция
LS : 1, // Масштаб карты освещения (1м/16 или 1м) LS : 1, // Масштаб карты освещения (1м/16 или 1м)
Tex : 18, // Текстура Tex : 18, // Текстура
N2 : 14, // Не занято N2 : 2, // Не занято
TU : 16, TV : 16; // UV на текстуре TU : 16, TV : 16; // UV на текстуре
bool operator==(const NodeVertexStatic& other) const { bool operator==(const NodeVertexStatic& other) const {

View File

@@ -0,0 +1,198 @@
#include "PipelinedTextureAtlas.hpp"
PipelinedTextureAtlas::PipelinedTextureAtlas(TextureAtlas&& tk)
: Super(std::move(tk)) {}
PipelinedTextureAtlas::AtlasTextureId PipelinedTextureAtlas::getByPipeline(const HashedPipeline& pipeline) {
auto iter = _PipeToTexId.find(pipeline);
if (iter == _PipeToTexId.end()) {
AtlasTextureId atlasTexId = Super.registerTexture();
_PipeToTexId.insert({pipeline, atlasTexId});
_ChangedPipelines.push_back(pipeline);
for (uint32_t texId : pipeline.getDependencedTextures()) {
_AddictedTextures[texId].push_back(pipeline);
}
return atlasTexId;
}
return iter->second;
}
void PipelinedTextureAtlas::freeByPipeline(const HashedPipeline& pipeline) {
auto iter = _PipeToTexId.find(pipeline);
if (iter == _PipeToTexId.end()) {
return;
}
for (uint32_t texId : pipeline.getDependencedTextures()) {
auto iterAT = _AddictedTextures.find(texId);
assert(iterAT != _AddictedTextures.end());
auto iterATSub = std::find(iterAT->second.begin(), iterAT->second.end(), pipeline);
assert(iterATSub != iterAT->second.end());
iterAT->second.erase(iterATSub);
}
Super.removeTexture(iter->second);
_AtlasCpuTextures.erase(iter->second);
_PipeToTexId.erase(iter);
}
void PipelinedTextureAtlas::updateTexture(uint32_t texId, const StoredTexture& texture) {
_ResToTexture[texId] = texture;
_ChangedTextures.push_back(texId);
}
void PipelinedTextureAtlas::updateTexture(uint32_t texId, StoredTexture&& texture) {
_ResToTexture[texId] = std::move(texture);
_ChangedTextures.push_back(texId);
}
void PipelinedTextureAtlas::freeTexture(uint32_t texId) {
auto iter = _ResToTexture.find(texId);
if (iter != _ResToTexture.end()) {
_ResToTexture.erase(iter);
}
}
bool PipelinedTextureAtlas::getHostTexture(TextureId texId, HostTextureView& out) const {
auto fill = [&](const StoredTexture& tex) -> bool {
if (tex._Pixels.empty() || tex._Widht == 0 || tex._Height == 0) {
return false;
}
out.width = tex._Widht;
out.height = tex._Height;
out.rowPitchBytes = static_cast<uint32_t>(tex._Widht) * 4u;
out.pixelsRGBA8 = reinterpret_cast<const uint8_t*>(tex._Pixels.data());
return true;
};
auto it = _ResToTexture.find(texId);
if (it != _ResToTexture.end() && fill(it->second)) {
return true;
}
auto itAtlas = _AtlasCpuTextures.find(texId);
if (itAtlas != _AtlasCpuTextures.end() && fill(itAtlas->second)) {
return true;
}
return false;
}
StoredTexture PipelinedTextureAtlas::_generatePipelineTexture(const HashedPipeline& pipeline) {
std::vector<detail::Word> words(pipeline._Pipeline.begin(), pipeline._Pipeline.end());
if (words.empty()) {
if (auto tex = tryCopyFirstDependencyTexture(pipeline)) {
return *tex;
}
return makeSolidColorTexture(0xFFFF00FFu);
}
TexturePipelineProgram program;
program.fromWords(std::move(words));
TexturePipelineProgram::OwnedTexture baked;
auto provider = [this](uint32_t texId) -> std::optional<Texture> {
auto iter = _ResToTexture.find(texId);
if (iter == _ResToTexture.end()) {
return std::nullopt;
}
const StoredTexture& stored = iter->second;
if (stored._Pixels.empty() || stored._Widht == 0 || stored._Height == 0) {
return std::nullopt;
}
Texture tex{};
tex.Width = stored._Widht;
tex.Height = stored._Height;
tex.Pixels = stored._Pixels.data();
return tex;
};
if (!program.bake(provider, baked, nullptr)) {
if (auto tex = tryCopyFirstDependencyTexture(pipeline)) {
return *tex;
}
return makeSolidColorTexture(0xFFFF00FFu);
}
const uint32_t width = baked.Width;
const uint32_t height = baked.Height;
if (width == 0 || height == 0 ||
width > std::numeric_limits<uint16_t>::max() ||
height > std::numeric_limits<uint16_t>::max() ||
baked.Pixels.size() != static_cast<size_t>(width) * static_cast<size_t>(height)) {
if (auto tex = tryCopyFirstDependencyTexture(pipeline)) {
return *tex;
}
return makeSolidColorTexture(0xFFFF00FFu);
}
return StoredTexture(static_cast<uint16_t>(width),
static_cast<uint16_t>(height),
std::move(baked.Pixels));
}
void PipelinedTextureAtlas::flushNewPipelines() {
std::vector<uint32_t> changedTextures = std::move(_ChangedTextures);
std::sort(changedTextures.begin(), changedTextures.end());
changedTextures.erase(std::unique(changedTextures.begin(), changedTextures.end()), changedTextures.end());
std::vector<HashedPipeline> changedPipelineTextures;
for (uint32_t texId : changedTextures) {
auto iter = _AddictedTextures.find(texId);
if (iter == _AddictedTextures.end()) {
continue;
}
changedPipelineTextures.append_range(iter->second);
}
changedPipelineTextures.append_range(std::move(_ChangedPipelines));
changedTextures.clear();
std::sort(changedPipelineTextures.begin(), changedPipelineTextures.end());
changedPipelineTextures.erase(std::unique(changedPipelineTextures.begin(), changedPipelineTextures.end()),
changedPipelineTextures.end());
for (const HashedPipeline& pipeline : changedPipelineTextures) {
auto iterPTTI = _PipeToTexId.find(pipeline);
assert(iterPTTI != _PipeToTexId.end());
StoredTexture texture = _generatePipelineTexture(pipeline);
AtlasTextureId atlasTexId = iterPTTI->second;
auto& stored = _AtlasCpuTextures[atlasTexId];
stored = std::move(texture);
if (!stored._Pixels.empty()) {
Super.setTextureData(atlasTexId,
stored._Widht,
stored._Height,
stored._Pixels.data(),
stored._Widht * 4u);
}
}
}
TextureAtlas::DescriptorOut PipelinedTextureAtlas::flushUploadsAndBarriers(VkCommandBuffer cmdBuffer) {
return Super.flushUploadsAndBarriers(cmdBuffer);
}
void PipelinedTextureAtlas::notifyGpuFinished() {
Super.notifyGpuFinished();
}
std::optional<StoredTexture> PipelinedTextureAtlas::tryCopyFirstDependencyTexture(const HashedPipeline& pipeline) const {
auto deps = pipeline.getDependencedTextures();
if (!deps.empty()) {
auto iter = _ResToTexture.find(deps.front());
if (iter != _ResToTexture.end()) {
return iter->second;
}
}
return std::nullopt;
}
StoredTexture PipelinedTextureAtlas::makeSolidColorTexture(uint32_t rgba) {
return StoredTexture(1, 1, std::vector<uint32_t>{rgba});
}

View File

@@ -0,0 +1,380 @@
#pragma once
#include "TextureAtlas.hpp"
#include "TexturePipelineProgram.hpp"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <optional>
#include <unordered_map>
#include <utility>
#include <vector>
#include "boost/container/small_vector.hpp"
using TextureId = uint32_t;
namespace detail {
using Word = TexturePipelineProgram::Word;
enum class Op16 : Word {
End = 0,
Base_Tex = 1,
Base_Fill = 2,
Resize = 10,
Transform = 11,
Opacity = 12,
NoAlpha = 13,
MakeAlpha = 14,
Invert = 15,
Brighten = 16,
Contrast = 17,
Multiply = 18,
Screen = 19,
Colorize = 20,
Overlay = 30,
Mask = 31,
LowPart = 32,
Combine = 40
};
enum class SrcKind16 : Word { TexId = 0, Sub = 1 };
struct SrcRef16 {
SrcKind16 kind{SrcKind16::TexId};
Word a = 0;
Word b = 0;
};
inline uint32_t makeU32(Word lo, Word hi) {
return uint32_t(lo) | (uint32_t(hi) << 16);
}
inline void addUniqueDep(boost::container::small_vector<uint32_t, 8>& deps, uint32_t id) {
if (id == TextureAtlas::kOverflowId) {
return;
}
if (std::find(deps.begin(), deps.end(), id) == deps.end()) {
deps.push_back(id);
}
}
inline bool readSrc(const std::vector<Word>& words, size_t end, size_t& ip, SrcRef16& out) {
if (ip + 2 >= end) {
return false;
}
out.kind = static_cast<SrcKind16>(words[ip++]);
out.a = words[ip++];
out.b = words[ip++];
return true;
}
inline void extractPipelineDependencies(const std::vector<Word>& words,
size_t start,
size_t end,
boost::container::small_vector<uint32_t, 8>& deps,
std::vector<std::pair<size_t, size_t>>& visited) {
if (start >= end || end > words.size()) {
return;
}
const std::pair<size_t, size_t> key{start, end};
if (std::find(visited.begin(), visited.end(), key) != visited.end()) {
return;
}
visited.push_back(key);
size_t ip = start;
auto need = [&](size_t n) { return ip + n <= end; };
auto handleSrc = [&](const SrcRef16& src) {
if (src.kind == SrcKind16::TexId) {
addUniqueDep(deps, makeU32(src.a, src.b));
return;
}
if (src.kind == SrcKind16::Sub) {
size_t subStart = static_cast<size_t>(src.a);
size_t subEnd = subStart + static_cast<size_t>(src.b);
if (subStart < subEnd && subEnd <= words.size()) {
extractPipelineDependencies(words, subStart, subEnd, deps, visited);
}
}
};
while (ip < end) {
if (!need(1)) break;
Op16 op = static_cast<Op16>(words[ip++]);
switch (op) {
case Op16::End:
return;
case Op16::Base_Tex: {
if (!need(3)) return;
SrcRef16 src{};
if (!readSrc(words, end, ip, src)) return;
handleSrc(src);
} break;
case Op16::Base_Fill:
if (!need(4)) return;
ip += 4;
break;
case Op16::Overlay:
case Op16::Mask: {
if (!need(3)) return;
SrcRef16 src{};
if (!readSrc(words, end, ip, src)) return;
handleSrc(src);
} break;
case Op16::LowPart: {
if (!need(1 + 3)) return;
ip += 1; // percent
SrcRef16 src{};
if (!readSrc(words, end, ip, src)) return;
handleSrc(src);
} break;
case Op16::Resize:
if (!need(2)) return;
ip += 2;
break;
case Op16::Transform:
case Op16::Opacity:
if (!need(1)) return;
ip += 1;
break;
case Op16::NoAlpha:
case Op16::Brighten:
break;
case Op16::MakeAlpha:
if (!need(2)) return;
ip += 2;
break;
case Op16::Invert:
if (!need(1)) return;
ip += 1;
break;
case Op16::Contrast:
if (!need(2)) return;
ip += 2;
break;
case Op16::Multiply:
case Op16::Screen:
if (!need(2)) return;
ip += 2;
break;
case Op16::Colorize:
if (!need(3)) return;
ip += 3;
break;
case Op16::Combine: {
if (!need(3)) return;
ip += 2; // skip w,h
uint32_t n = words[ip++];
for (uint32_t i = 0; i < n; ++i) {
if (!need(2 + 3)) return;
ip += 2; // x, y
SrcRef16 src{};
if (!readSrc(words, end, ip, src)) return;
handleSrc(src);
}
} break;
default:
return;
}
}
}
inline boost::container::small_vector<uint32_t, 8> extractPipelineDependencies(const std::vector<Word>& words) {
boost::container::small_vector<uint32_t, 8> deps;
std::vector<std::pair<size_t, size_t>> visited;
extractPipelineDependencies(words, 0, words.size(), deps, visited);
return deps;
}
inline boost::container::small_vector<uint32_t, 8> extractPipelineDependencies(const boost::container::small_vector<Word, 32>& words) {
boost::container::small_vector<uint32_t, 8> deps;
std::vector<std::pair<size_t, size_t>> visited;
std::vector<Word> copy(words.begin(), words.end());
extractPipelineDependencies(copy, 0, copy.size(), deps, visited);
return deps;
}
} // namespace detail
// Структура нехешированного пайплайна
struct Pipeline {
std::vector<detail::Word> _Pipeline;
Pipeline() = default;
explicit Pipeline(const TexturePipelineProgram& program)
: _Pipeline(program.words().begin(), program.words().end())
{
}
Pipeline(TextureId texId) {
_Pipeline = {
static_cast<detail::Word>(detail::Op16::Base_Tex),
static_cast<detail::Word>(detail::SrcKind16::TexId),
static_cast<detail::Word>(texId & 0xFFFFu),
static_cast<detail::Word>((texId >> 16) & 0xFFFFu),
static_cast<detail::Word>(detail::Op16::End)
};
}
};
// Структура хешированного текстурного пайплайна
struct HashedPipeline {
// Предвычисленный хеш
std::size_t _Hash;
boost::container::small_vector<detail::Word, 32> _Pipeline;
HashedPipeline() = default;
HashedPipeline(const Pipeline& pipeline) noexcept
: _Pipeline(pipeline._Pipeline.begin(), pipeline._Pipeline.end())
{
reComputeHash();
}
// Перевычисляет хеш
void reComputeHash() noexcept {
std::size_t hash = 14695981039346656037ull;
constexpr std::size_t prime = 1099511628211ull;
for(detail::Word w : _Pipeline) {
hash ^= static_cast<uint8_t>(w & 0xFF);
hash *= prime;
hash ^= static_cast<uint8_t>((w >> 8) & 0xFF);
hash *= prime;
}
_Hash = hash;
}
// Выдаёт список зависимых текстур, на основе которых строится эта
boost::container::small_vector<uint32_t, 8> getDependencedTextures() const {
return detail::extractPipelineDependencies(_Pipeline);
}
bool operator==(const HashedPipeline& obj) const noexcept {
return _Hash == obj._Hash && _Pipeline == obj._Pipeline;
}
bool operator<(const HashedPipeline& obj) const noexcept {
return _Hash < obj._Hash || (_Hash == obj._Hash && _Pipeline < obj._Pipeline);
}
};
struct StoredTexture {
uint16_t _Widht = 0;
uint16_t _Height = 0;
std::vector<uint32_t> _Pixels;
StoredTexture() = default;
StoredTexture(uint16_t w, uint16_t h, std::vector<uint32_t> pixels)
: _Widht(w), _Height(h), _Pixels(std::move(pixels))
{
}
};
// Пайплайновый текстурный атлас
class PipelinedTextureAtlas {
public:
using AtlasTextureId = uint32_t;
struct HostTextureView {
uint32_t width = 0;
uint32_t height = 0;
uint32_t rowPitchBytes = 0;
const uint8_t* pixelsRGBA8 = nullptr;
};
private:
// Функтор хеша
struct HashedPipelineKeyHash {
std::size_t operator()(const HashedPipeline& k) const noexcept {
return k._Hash;
}
};
// Функтор равенства
struct HashedPipelineKeyEqual {
bool operator()(const HashedPipeline& a, const HashedPipeline& b) const noexcept {
return a._Pipeline == b._Pipeline;
}
};
// Текстурный атлас
TextureAtlas Super;
// Пустой пайплайн (указывающий на одну текстуру) ссылается на простой идентификатор (ResToAtlas)
std::unordered_map<HashedPipeline, AtlasTextureId, HashedPipelineKeyHash, HashedPipelineKeyEqual> _PipeToTexId;
// Загруженные текстуры
std::unordered_map<TextureId, StoredTexture> _ResToTexture;
std::unordered_map<AtlasTextureId, StoredTexture> _AtlasCpuTextures;
// Список зависимых пайплайнов от текстур (при изменении текстуры, нужно перерисовать пайплайны)
std::unordered_map<TextureId, boost::container::small_vector<HashedPipeline, 8>> _AddictedTextures;
// Изменённые простые текстуры (для последующего массового обновление пайплайнов)
std::vector<uint32_t> _ChangedTextures;
// Необходимые к созданию/обновлению пайплайны
std::vector<HashedPipeline> _ChangedPipelines;
public:
PipelinedTextureAtlas(TextureAtlas&& tk);
uint32_t atlasSide() const {
return Super.atlasSide();
}
uint32_t atlasLayers() const {
return Super.atlasLayers();
}
uint32_t AtlasSide() const {
return atlasSide();
}
uint32_t AtlasLayers() const {
return atlasLayers();
}
// Должны всегда бронировать идентификатор, либо отдавать kOverflowId. При этом запись tex+pipeline остаётся
// Выдаёт стабильный идентификатор, привязанный к пайплайну
AtlasTextureId getByPipeline(const HashedPipeline& pipeline);
// Уведомить что текстура+pipeline более не используются (идентификатор будет освобождён)
// Освобождать можно при потере ресурсов
void freeByPipeline(const HashedPipeline& pipeline);
void updateTexture(uint32_t texId, const StoredTexture& texture);
void updateTexture(uint32_t texId, StoredTexture&& texture);
void freeTexture(uint32_t texId);
bool getHostTexture(TextureId texId, HostTextureView& out) const;
// Генерация текстуры пайплайна
StoredTexture _generatePipelineTexture(const HashedPipeline& pipeline);
// Обновляет пайплайны по необходимости
void flushNewPipelines();
TextureAtlas::DescriptorOut flushUploadsAndBarriers(VkCommandBuffer cmdBuffer);
void notifyGpuFinished();
private:
std::optional<StoredTexture> tryCopyFirstDependencyTexture(const HashedPipeline& pipeline) const;
static StoredTexture makeSolidColorTexture(uint32_t rgba);
};

View File

@@ -0,0 +1,169 @@
#pragma once
#include <vulkan/vulkan.h>
#include <cstdint>
#include <optional>
#include <stdexcept>
#include <utility>
/*
Межкадровый промежуточный буфер.
Для модели рендера Один за одним.
После окончания рендера кадра считается синхронизированным
и может заполняться по новой.
*/
class SharedStagingBuffer {
public:
static constexpr VkDeviceSize kDefaultSize = 64ull * 1024ull * 1024ull;
SharedStagingBuffer(VkDevice device,
VkPhysicalDevice physicalDevice,
VkDeviceSize sizeBytes = kDefaultSize)
: device_(device),
physicalDevice_(physicalDevice),
size_(sizeBytes) {
if (!device_ || !physicalDevice_) {
throw std::runtime_error("SharedStagingBuffer: null device/physicalDevice");
}
if (size_ == 0) {
throw std::runtime_error("SharedStagingBuffer: size must be > 0");
}
VkBufferCreateInfo bi{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = size_,
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr
};
if (vkCreateBuffer(device_, &bi, nullptr, &buffer_) != VK_SUCCESS) {
throw std::runtime_error("SharedStagingBuffer: vkCreateBuffer failed");
}
VkMemoryRequirements mr{};
vkGetBufferMemoryRequirements(device_, buffer_, &mr);
VkMemoryAllocateInfo ai{};
ai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
ai.allocationSize = mr.size;
ai.memoryTypeIndex = FindMemoryType_(mr.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
if (vkAllocateMemory(device_, &ai, nullptr, &memory_) != VK_SUCCESS) {
vkDestroyBuffer(device_, buffer_, nullptr);
buffer_ = VK_NULL_HANDLE;
throw std::runtime_error("SharedStagingBuffer: vkAllocateMemory failed");
}
vkBindBufferMemory(device_, buffer_, memory_, 0);
if (vkMapMemory(device_, memory_, 0, VK_WHOLE_SIZE, 0, &mapped_) != VK_SUCCESS) {
vkFreeMemory(device_, memory_, nullptr);
vkDestroyBuffer(device_, buffer_, nullptr);
buffer_ = VK_NULL_HANDLE;
memory_ = VK_NULL_HANDLE;
throw std::runtime_error("SharedStagingBuffer: vkMapMemory failed");
}
}
~SharedStagingBuffer() { Destroy_(); }
SharedStagingBuffer(const SharedStagingBuffer&) = delete;
SharedStagingBuffer& operator=(const SharedStagingBuffer&) = delete;
SharedStagingBuffer(SharedStagingBuffer&& other) noexcept {
*this = std::move(other);
}
SharedStagingBuffer& operator=(SharedStagingBuffer&& other) noexcept {
if (this != &other) {
Destroy_();
device_ = other.device_;
physicalDevice_ = other.physicalDevice_;
buffer_ = other.buffer_;
memory_ = other.memory_;
mapped_ = other.mapped_;
size_ = other.size_;
offset_ = other.offset_;
other.device_ = VK_NULL_HANDLE;
other.physicalDevice_ = VK_NULL_HANDLE;
other.buffer_ = VK_NULL_HANDLE;
other.memory_ = VK_NULL_HANDLE;
other.mapped_ = nullptr;
other.size_ = 0;
other.offset_ = 0;
}
return *this;
}
VkBuffer Buffer() const { return buffer_; }
void* Mapped() const { return mapped_; }
VkDeviceSize Size() const { return size_; }
std::optional<VkDeviceSize> Allocate(VkDeviceSize bytes, VkDeviceSize alignment) {
VkDeviceSize off = Align_(offset_, alignment);
if (off + bytes > size_) {
return std::nullopt;
}
offset_ = off + bytes;
return off;
}
void Reset() { offset_ = 0; }
private:
uint32_t FindMemoryType_(uint32_t typeBits, VkMemoryPropertyFlags properties) const {
VkPhysicalDeviceMemoryProperties mp{};
vkGetPhysicalDeviceMemoryProperties(physicalDevice_, &mp);
for (uint32_t i = 0; i < mp.memoryTypeCount; ++i) {
if ((typeBits & (1u << i)) &&
(mp.memoryTypes[i].propertyFlags & properties) == properties) {
return i;
}
}
throw std::runtime_error("SharedStagingBuffer: no suitable memory type");
}
static VkDeviceSize Align_(VkDeviceSize value, VkDeviceSize alignment) {
if (alignment == 0) return value;
return (value + alignment - 1) & ~(alignment - 1);
}
void Destroy_() {
if (device_ == VK_NULL_HANDLE) {
return;
}
if (mapped_) {
vkUnmapMemory(device_, memory_);
mapped_ = nullptr;
}
if (buffer_) {
vkDestroyBuffer(device_, buffer_, nullptr);
buffer_ = VK_NULL_HANDLE;
}
if (memory_) {
vkFreeMemory(device_, memory_, nullptr);
memory_ = VK_NULL_HANDLE;
}
size_ = 0;
offset_ = 0;
device_ = VK_NULL_HANDLE;
physicalDevice_ = VK_NULL_HANDLE;
}
VkDevice device_ = VK_NULL_HANDLE;
VkPhysicalDevice physicalDevice_ = VK_NULL_HANDLE;
VkBuffer buffer_ = VK_NULL_HANDLE;
VkDeviceMemory memory_ = VK_NULL_HANDLE;
void* mapped_ = nullptr;
VkDeviceSize size_ = 0;
VkDeviceSize offset_ = 0;
};

View File

@@ -0,0 +1,477 @@
#include "TextureAtlas.hpp"
TextureAtlas::TextureAtlas(VkDevice device,
VkPhysicalDevice physicalDevice,
const Config& cfg,
EventCallback cb,
std::shared_ptr<SharedStagingBuffer> staging)
: Device_(device),
Phys_(physicalDevice),
Cfg_(cfg),
OnEvent_(std::move(cb)),
Staging_(std::move(staging)) {
if(!Device_ || !Phys_) {
throw std::runtime_error("TextureAtlas: device/physicalDevice == null");
}
_validateConfigOrThrow();
VkPhysicalDeviceProperties props{};
vkGetPhysicalDeviceProperties(Phys_, &props);
CopyOffsetAlignment_ = std::max<VkDeviceSize>(4, props.limits.optimalBufferCopyOffsetAlignment);
if(!Staging_) {
Staging_ = std::make_shared<SharedStagingBuffer>(Device_, Phys_, kStagingSizeBytes);
}
_validateStagingCapacityOrThrow();
_createEntriesBufferOrThrow();
_createAtlasOrThrow(Cfg_.InitialSide, 1);
EntriesCpu_.resize(Cfg_.MaxTextureId);
std::memset(EntriesCpu_.data(), 0, EntriesCpu_.size() * sizeof(Entry));
EntriesDirty_ = true;
Slots_.resize(Cfg_.MaxTextureId);
FreeIds_.reserve(Cfg_.MaxTextureId);
PendingInQueue_.assign(Cfg_.MaxTextureId, false);
if(Cfg_.ExternalSampler != VK_NULL_HANDLE) {
Sampler_ = Cfg_.ExternalSampler;
OwnsSampler_ = false;
} else {
_createSamplerOrThrow();
OwnsSampler_ = true;
}
_rebuildPackersFromPlacements();
Alive_ = true;
}
TextureAtlas::~TextureAtlas() { _shutdownNoThrow(); }
TextureAtlas::TextureAtlas(TextureAtlas&& other) noexcept {
_moveFrom(std::move(other));
}
TextureAtlas& TextureAtlas::operator=(TextureAtlas&& other) noexcept {
if(this != &other) {
_shutdownNoThrow();
_moveFrom(std::move(other));
}
return *this;
}
void TextureAtlas::shutdown() {
_ensureAliveOrThrow();
_shutdownNoThrow();
}
TextureAtlas::TextureId TextureAtlas::registerTexture() {
_ensureAliveOrThrow();
TextureId id = kOverflowId;
if(!FreeIds_.empty()) {
id = FreeIds_.back();
FreeIds_.pop_back();
} else if(NextId_ < Cfg_.MaxTextureId) {
id = NextId_++;
} else {
return kOverflowId;
}
Slot& s = Slots_[id];
s = Slot{};
s.InUse = true;
s.StateValue = State::REGISTERED;
s.Generation = 1;
_setEntryInvalid(id, /*diagPending*/false, /*diagTooLarge*/false);
EntriesDirty_ = true;
return id;
}
void TextureAtlas::setTextureData(TextureId id,
uint32_t w,
uint32_t h,
const void* pixelsRGBA8,
uint32_t rowPitchBytes) {
_ensureAliveOrThrow();
if(id == kOverflowId) return;
_ensureRegisteredIdOrThrow(id);
if(w == 0 || h == 0) {
throw _inputError("setTextureData: w/h must be > 0");
}
if(w > Cfg_.MaxTextureSize || h > Cfg_.MaxTextureSize) {
_handleTooLarge(id);
throw _inputError("setTextureData: texture is TOO_LARGE (>2048)");
}
if(!pixelsRGBA8) {
throw _inputError("setTextureData: pixelsRGBA8 == null");
}
if(rowPitchBytes == 0) {
rowPitchBytes = w * 4;
}
if(rowPitchBytes < w * 4) {
throw _inputError("setTextureData: rowPitchBytes < w*4");
}
Slot& s = Slots_[id];
const bool sizeChanged = (s.HasCpuData && (s.W != w || s.H != h));
if(sizeChanged) {
_freePlacement(id);
_setEntryInvalid(id, /*diagPending*/true, /*diagTooLarge*/false);
EntriesDirty_ = true;
}
s.W = w;
s.H = h;
s.CpuPixels = static_cast<const uint8_t*>(pixelsRGBA8);
s.CpuRowPitchBytes = rowPitchBytes;
s.HasCpuData = true;
s.StateValue = State::PENDING_UPLOAD;
s.Generation++;
if(!sizeChanged && s.HasPlacement && s.StateWasValid) {
// keep entry valid
} else if(!s.HasPlacement) {
_setEntryInvalid(id, /*diagPending*/true, /*diagTooLarge*/false);
EntriesDirty_ = true;
}
_enqueuePending(id);
if(Repack_.Active && Repack_.Plan.count(id) != 0) {
_enqueueRepackPending(id);
}
}
void TextureAtlas::clearTextureData(TextureId id) {
_ensureAliveOrThrow();
if(id == kOverflowId) return;
_ensureRegisteredIdOrThrow(id);
Slot& s = Slots_[id];
s.CpuPixels = nullptr;
s.CpuRowPitchBytes = 0;
s.HasCpuData = false;
_freePlacement(id);
s.StateValue = State::REGISTERED;
s.StateWasValid = false;
_removeFromPending(id);
_removeFromRepackPending(id);
_setEntryInvalid(id, /*diagPending*/false, /*diagTooLarge*/false);
EntriesDirty_ = true;
}
void TextureAtlas::removeTexture(TextureId id) {
_ensureAliveOrThrow();
if(id == kOverflowId) return;
_ensureRegisteredIdOrThrow(id);
Slot& s = Slots_[id];
clearTextureData(id);
s.InUse = false;
s.StateValue = State::REMOVED;
FreeIds_.push_back(id);
_setEntryInvalid(id, /*diagPending*/false, /*diagTooLarge*/false);
EntriesDirty_ = true;
}
void TextureAtlas::requestFullRepack(RepackMode mode) {
_ensureAliveOrThrow();
Repack_.Requested = true;
Repack_.Mode = mode;
}
TextureAtlas::DescriptorOut TextureAtlas::flushUploadsAndBarriers(VkCommandBuffer cmdBuffer) {
_ensureAliveOrThrow();
if(cmdBuffer == VK_NULL_HANDLE) {
throw _inputError("flushUploadsAndBarriers: cmdBuffer == null");
}
if(Repack_.SwapReady) {
_swapToRepackedAtlas();
}
if(Repack_.Requested && !Repack_.Active) {
_startRepackIfPossible();
}
_processPendingLayerGrow(cmdBuffer);
bool willTouchEntries = EntriesDirty_;
auto collectQueue = [this](std::deque<TextureId>& queue,
std::vector<bool>& inQueue,
std::vector<TextureId>& out) {
while (!queue.empty()) {
TextureId id = queue.front();
queue.pop_front();
if(id == kOverflowId || id >= inQueue.size()) {
continue;
}
if(!inQueue[id]) {
continue;
}
inQueue[id] = false;
out.push_back(id);
}
};
std::vector<TextureId> pendingNow;
pendingNow.reserve(Pending_.size());
collectQueue(Pending_, PendingInQueue_, pendingNow);
std::vector<TextureId> repackPending;
if(Repack_.Active) {
if(Repack_.InPending.empty()) {
Repack_.InPending.assign(Cfg_.MaxTextureId, false);
}
collectQueue(Repack_.Pending, Repack_.InPending, repackPending);
}
auto processPlacement = [&](TextureId id, Slot& s) -> bool {
if(s.HasPlacement) return true;
const uint32_t wP = s.W + 2u * Cfg_.PaddingPx;
const uint32_t hP = s.H + 2u * Cfg_.PaddingPx;
if(!_tryPlaceWithGrow(id, wP, hP, cmdBuffer)) {
return false;
}
willTouchEntries = true;
return true;
};
bool outOfSpace = false;
for(TextureId id : pendingNow) {
if(id == kOverflowId) continue;
if(id >= Slots_.size()) continue;
Slot& s = Slots_[id];
if(!s.InUse || !s.HasCpuData) continue;
if(!processPlacement(id, s)) {
outOfSpace = true;
_enqueuePending(id);
}
}
if(outOfSpace) {
_emitEventOncePerFlush(AtlasEvent::AtlasOutOfSpace);
}
bool anyAtlasWrites = false;
bool anyRepackWrites = false;
auto uploadTextureIntoAtlas = [&](Slot& s,
const Placement& pp,
ImageRes& targetAtlas,
bool isRepackTarget) {
const uint32_t wP = pp.WP;
const uint32_t hP = pp.HP;
const VkDeviceSize bytes = static_cast<VkDeviceSize>(wP) * hP * 4u;
auto stagingOff = Staging_->Allocate(bytes, CopyOffsetAlignment_);
if(!stagingOff) {
_emitEventOncePerFlush(AtlasEvent::StagingOverflow);
return false;
}
uint8_t* dst = static_cast<uint8_t*>(Staging_->Mapped()) + *stagingOff;
if(!s.CpuPixels) {
return false;
}
_writePaddedRGBA8(dst, wP * 4u, s.W, s.H, Cfg_.PaddingPx,
s.CpuPixels, s.CpuRowPitchBytes);
_ensureImageLayoutForTransferDst(cmdBuffer, targetAtlas,
isRepackTarget ? anyRepackWrites : anyAtlasWrites);
VkBufferImageCopy region{};
region.bufferOffset = *stagingOff;
region.bufferRowLength = wP;
region.bufferImageHeight = hP;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.mipLevel = 0;
region.imageSubresource.baseArrayLayer = pp.Layer;
region.imageSubresource.layerCount = 1;
region.imageOffset = { static_cast<int32_t>(pp.X),
static_cast<int32_t>(pp.Y), 0 };
region.imageExtent = { wP, hP, 1 };
vkCmdCopyBufferToImage(cmdBuffer, Staging_->Buffer(), targetAtlas.Image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
return true;
};
for(TextureId id : pendingNow) {
if(id == kOverflowId) continue;
Slot& s = Slots_[id];
if(!s.InUse || !s.HasCpuData || !s.HasPlacement) continue;
if(!uploadTextureIntoAtlas(s, s.Place, Atlas_, false)) {
_enqueuePending(id);
continue;
}
s.StateValue = State::VALID;
s.StateWasValid = true;
_setEntryValid(id);
EntriesDirty_ = true;
}
if(Repack_.Active) {
for(TextureId id : repackPending) {
if(Repack_.Plan.count(id) == 0) continue;
Slot& s = Slots_[id];
if(!s.InUse || !s.HasCpuData) continue;
const PlannedPlacement& pp = Repack_.Plan[id];
Placement place{pp.X, pp.Y, pp.WP, pp.HP, pp.Layer};
if(!uploadTextureIntoAtlas(s, place, Repack_.Atlas, true)) {
_enqueueRepackPending(id);
continue;
}
Repack_.WroteSomethingThisFlush = true;
}
}
if(willTouchEntries || EntriesDirty_) {
const VkDeviceSize entriesBytes = static_cast<VkDeviceSize>(EntriesCpu_.size()) * sizeof(Entry);
auto off = Staging_->Allocate(entriesBytes, CopyOffsetAlignment_);
if(!off) {
_emitEventOncePerFlush(AtlasEvent::StagingOverflow);
} else {
std::memcpy(static_cast<uint8_t*>(Staging_->Mapped()) + *off,
EntriesCpu_.data(),
static_cast<size_t>(entriesBytes));
VkBufferCopy c{};
c.srcOffset = *off;
c.dstOffset = 0;
c.size = entriesBytes;
vkCmdCopyBuffer(cmdBuffer, Staging_->Buffer(), Entries_.Buffer, 1, &c);
VkBufferMemoryBarrier b{};
b.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
b.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
b.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
b.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
b.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
b.buffer = Entries_.Buffer;
b.offset = 0;
b.size = VK_WHOLE_SIZE;
vkCmdPipelineBarrier(cmdBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
0, 0, nullptr, 1, &b, 0, nullptr);
EntriesDirty_ = false;
}
}
if(anyAtlasWrites) {
_transitionImage(cmdBuffer, Atlas_,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
} else if(Atlas_.Layout == VK_IMAGE_LAYOUT_UNDEFINED) {
_transitionImage(cmdBuffer, Atlas_,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
0, VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
}
if(anyRepackWrites) {
_transitionImage(cmdBuffer, Repack_.Atlas,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
}
if(Repack_.Active) {
if(Repack_.Pending.empty()) {
Repack_.WaitingGpuForReady = true;
}
Repack_.WroteSomethingThisFlush = false;
}
return _buildDescriptorOut();
}
void TextureAtlas::notifyGpuFinished() {
_ensureAliveOrThrow();
for(auto& img : DeferredImages_) {
_destroyImage(img);
}
DeferredImages_.clear();
if(Staging_) {
Staging_->Reset();
}
FlushEventMask_ = 0;
if(Repack_.Active && Repack_.WaitingGpuForReady && Repack_.Pending.empty()) {
Repack_.SwapReady = true;
Repack_.WaitingGpuForReady = false;
}
}
void TextureAtlas::_moveFrom(TextureAtlas&& other) noexcept {
Device_ = other.Device_;
Phys_ = other.Phys_;
Cfg_ = other.Cfg_;
OnEvent_ = std::move(other.OnEvent_);
Alive_ = other.Alive_;
CopyOffsetAlignment_ = other.CopyOffsetAlignment_;
Staging_ = std::move(other.Staging_);
Entries_ = other.Entries_;
Atlas_ = other.Atlas_;
Sampler_ = other.Sampler_;
OwnsSampler_ = other.OwnsSampler_;
EntriesCpu_ = std::move(other.EntriesCpu_);
EntriesDirty_ = other.EntriesDirty_;
Slots_ = std::move(other.Slots_);
FreeIds_ = std::move(other.FreeIds_);
NextId_ = other.NextId_;
Pending_ = std::move(other.Pending_);
PendingInQueue_ = std::move(other.PendingInQueue_);
Packers_ = std::move(other.Packers_);
DeferredImages_ = std::move(other.DeferredImages_);
FlushEventMask_ = other.FlushEventMask_;
GrewThisFlush_ = other.GrewThisFlush_;
Repack_ = std::move(other.Repack_);
other.Device_ = VK_NULL_HANDLE;
other.Phys_ = VK_NULL_HANDLE;
other.OnEvent_ = {};
other.Alive_ = false;
other.CopyOffsetAlignment_ = 0;
other.Staging_.reset();
other.Entries_ = {};
other.Atlas_ = {};
other.Sampler_ = VK_NULL_HANDLE;
other.OwnsSampler_ = false;
other.EntriesCpu_.clear();
other.EntriesDirty_ = false;
other.Slots_.clear();
other.FreeIds_.clear();
other.NextId_ = 0;
other.Pending_.clear();
other.PendingInQueue_.clear();
other.Packers_.clear();
other.DeferredImages_.clear();
other.FlushEventMask_ = 0;
other.GrewThisFlush_ = false;
other.Repack_ = RepackState{};
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,12 +1,43 @@
#pragma once #pragma once
#include "Vulkan.hpp" #include "Vulkan.hpp"
#include "Client/Vulkan/AtlasPipeline/SharedStagingBuffer.hpp"
#include <algorithm>
#include <bitset> #include <bitset>
#include <cstring>
#include <memory>
#include <optional>
#include <queue>
#include <vector>
#include <vulkan/vulkan_core.h> #include <vulkan/vulkan_core.h>
namespace LV::Client::VK { namespace LV::Client::VK {
inline std::weak_ptr<SharedStagingBuffer>& globalVertexStaging() {
static std::weak_ptr<SharedStagingBuffer> staging;
return staging;
}
inline std::shared_ptr<SharedStagingBuffer> getOrCreateVertexStaging(Vulkan* inst) {
auto& staging = globalVertexStaging();
std::shared_ptr<SharedStagingBuffer> shared = staging.lock();
if(!shared) {
shared = std::make_shared<SharedStagingBuffer>(
inst->Graphics.Device,
inst->Graphics.PhysicalDevice
);
staging = shared;
}
return shared;
}
inline void resetVertexStaging() {
auto& staging = globalVertexStaging();
if(auto shared = staging.lock())
shared->Reset();
}
/* /*
Память на устройстве выделяется пулами Память на устройстве выделяется пулами
Для массивов вершин память выделяется блоками по PerBlock вершин в каждом Для массивов вершин память выделяется блоками по PerBlock вершин в каждом
@@ -22,10 +53,8 @@ class VertexPool {
Vulkan *Inst; Vulkan *Inst;
// Память, доступная для обмена с устройством // Память, доступная для обмена с устройством
Buffer HostCoherent; std::shared_ptr<SharedStagingBuffer> Staging;
Vertex *HCPtr = nullptr; VkDeviceSize CopyOffsetAlignment = 4;
VkFence Fence = nullptr;
size_t WritePos = 0;
struct Pool { struct Pool {
// Память на устройстве // Память на устройстве
@@ -47,7 +76,6 @@ class VertexPool {
struct Task { struct Task {
std::vector<Vertex> Data; std::vector<Vertex> Data;
size_t Pos = -1; // Если данные уже записаны, то будет указана позиция в буфере общения
uint8_t PoolId; // Куда потом направить uint8_t PoolId; // Куда потом направить
uint16_t BlockId; // И в какой блок uint16_t BlockId; // И в какой блок
}; };
@@ -61,46 +89,21 @@ class VertexPool {
private: private:
void pushData(std::vector<Vertex>&& data, uint8_t poolId, uint16_t blockId) { void pushData(std::vector<Vertex>&& data, uint8_t poolId, uint16_t blockId) {
if(HC_Buffer_Size-WritePos >= data.size()) { TasksWait.push({std::move(data), poolId, blockId});
// Пишем в общий буфер, TasksWait
Vertex *ptr = HCPtr+WritePos;
std::copy(data.begin(), data.end(), ptr);
size_t count = data.size();
TasksWait.push({std::move(data), WritePos, poolId, blockId});
WritePos += count;
} else {
// Отложим запись на следующий такт
TasksPostponed.push(Task(std::move(data), -1, poolId, blockId));
}
} }
public: public:
VertexPool(Vulkan* inst) VertexPool(Vulkan* inst)
: Inst(inst), : Inst(inst)
HostCoherent(inst,
sizeof(Vertex)*HC_Buffer_Size+4 /* Для vkCmdFillBuffer */,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
{ {
Pools.reserve(16); Pools.reserve(16);
HCPtr = (Vertex*) HostCoherent.mapMemory(); Staging = getOrCreateVertexStaging(inst);
VkPhysicalDeviceProperties props{};
const VkFenceCreateInfo info = { vkGetPhysicalDeviceProperties(inst->Graphics.PhysicalDevice, &props);
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, CopyOffsetAlignment = std::max<VkDeviceSize>(4, props.limits.optimalBufferCopyOffsetAlignment);
.pNext = nullptr,
.flags = 0
};
vkAssert(!vkCreateFence(inst->Graphics.Device, &info, nullptr, &Fence));
} }
~VertexPool() { ~VertexPool() {
if(HCPtr)
HostCoherent.unMapMemory();
if(Fence) {
vkDestroyFence(Inst->Graphics.Device, Fence, nullptr);
}
} }
@@ -229,44 +232,65 @@ public:
} }
/* /*
Должно вызываться после приёма всех данных и перед рендером Должно вызываться после приёма всех данных, до начала рендера в командном буфере
*/ */
void update(VkCommandPool commandPool) { void flushUploadsAndBarriers(VkCommandBuffer commandBuffer) {
if(TasksWait.empty()) if(TasksWait.empty())
return; return;
assert(WritePos); struct CopyTask {
VkBuffer DstBuffer;
VkCommandBufferAllocateInfo allocInfo { VkDeviceSize SrcOffset;
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, VkDeviceSize DstOffset;
nullptr, VkDeviceSize Size;
commandPool, uint8_t PoolId;
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1
}; };
VkCommandBuffer commandBuffer; std::vector<CopyTask> copies;
vkAllocateCommandBuffers(Inst->Graphics.Device, &allocInfo, &commandBuffer); copies.reserve(TasksWait.size());
std::vector<uint8_t> touchedPools(Pools.size(), 0);
VkCommandBufferBeginInfo beginInfo { while(!TasksWait.empty()) {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, Task task = std::move(TasksWait.front());
nullptr, TasksWait.pop();
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
nullptr
};
vkBeginCommandBuffer(commandBuffer, &beginInfo); VkDeviceSize bytes = task.Data.size()*sizeof(Vertex);
std::optional<VkDeviceSize> stagingOffset = Staging->Allocate(bytes, CopyOffsetAlignment);
if(!stagingOffset) {
TasksPostponed.push(std::move(task));
while(!TasksWait.empty()) {
TasksPostponed.push(std::move(TasksWait.front()));
TasksWait.pop();
}
break;
}
VkBufferMemoryBarrier barrier = { std::memcpy(static_cast<uint8_t*>(Staging->Mapped()) + *stagingOffset,
task.Data.data(), bytes);
copies.push_back({
Pools[task.PoolId].DeviceBuff.getBuffer(),
*stagingOffset,
task.BlockId*sizeof(Vertex)*size_t(PerBlock),
bytes,
task.PoolId
});
touchedPools[task.PoolId] = 1;
}
if(copies.empty())
return;
VkBufferMemoryBarrier stagingBarrier = {
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
nullptr, nullptr,
VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_HOST_WRITE_BIT,
VK_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_TRANSFER_READ_BIT,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED,
HostCoherent.getBuffer(), Staging->Buffer(),
0, 0,
WritePos*sizeof(Vertex) Staging->Size()
}; };
vkCmdPipelineBarrier( vkCmdPipelineBarrier(
@@ -275,53 +299,60 @@ public:
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0,
0, nullptr, 0, nullptr,
1, &barrier, 1, &stagingBarrier,
0, nullptr 0, nullptr
); );
while(!TasksWait.empty()) { for(const CopyTask& copy : copies) {
Task& task = TasksWait.front();
VkBufferCopy copyRegion { VkBufferCopy copyRegion {
task.Pos*sizeof(Vertex), copy.SrcOffset,
task.BlockId*sizeof(Vertex)*size_t(PerBlock), copy.DstOffset,
task.Data.size()*sizeof(Vertex) copy.Size
}; };
assert(copyRegion.dstOffset+copyRegion.size < sizeof(Vertex)*PerBlock*PerPool); assert(copyRegion.dstOffset+copyRegion.size <= Pools[copy.PoolId].DeviceBuff.getSize());
vkCmdCopyBuffer(commandBuffer, HostCoherent.getBuffer(), Pools[task.PoolId].DeviceBuff.getBuffer(), vkCmdCopyBuffer(commandBuffer, Staging->Buffer(), copy.DstBuffer, 1, &copyRegion);
1, &copyRegion);
TasksWait.pop();
} }
vkEndCommandBuffer(commandBuffer); std::vector<VkBufferMemoryBarrier> dstBarriers;
dstBarriers.reserve(Pools.size());
for(size_t poolId = 0; poolId < Pools.size(); poolId++) {
if(!touchedPools[poolId])
continue;
VkSubmitInfo submitInfo { VkBufferMemoryBarrier barrier = {
VK_STRUCTURE_TYPE_SUBMIT_INFO, VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
nullptr, nullptr,
0, nullptr, VK_ACCESS_TRANSFER_WRITE_BIT,
nullptr, IsIndex ? VK_ACCESS_INDEX_READ_BIT : VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
1, VK_QUEUE_FAMILY_IGNORED,
&commandBuffer, VK_QUEUE_FAMILY_IGNORED,
Pools[poolId].DeviceBuff.getBuffer(),
0, 0,
nullptr Pools[poolId].DeviceBuff.getSize()
}; };
{ dstBarriers.push_back(barrier);
auto lockQueue = Inst->Graphics.DeviceQueueGraphic.lock();
vkAssert(!vkQueueSubmit(*lockQueue, 1, &submitInfo, Fence));
} }
vkAssert(!vkWaitForFences(Inst->Graphics.Device, 1, &Fence, VK_TRUE, UINT64_MAX));
vkAssert(!vkResetFences(Inst->Graphics.Device, 1, &Fence));
vkFreeCommandBuffers(Inst->Graphics.Device, commandPool, 1, &commandBuffer);
if(!dstBarriers.empty()) {
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
0,
0, nullptr,
static_cast<uint32_t>(dstBarriers.size()),
dstBarriers.data(),
0, nullptr
);
}
}
void notifyGpuFinished() {
std::queue<Task> postponed = std::move(TasksPostponed); std::queue<Task> postponed = std::move(TasksPostponed);
WritePos = 0;
while(!postponed.empty()) { while(!postponed.empty()) {
Task& task = postponed.front(); TasksWait.push(std::move(postponed.front()));
pushData(std::move(task.Data), task.PoolId, task.BlockId);
postponed.pop(); postponed.pop();
} }
} }

View File

@@ -275,10 +275,6 @@ void Vulkan::run()
// if(CallBeforeDraw) // if(CallBeforeDraw)
// CallBeforeDraw(this); // CallBeforeDraw(this);
if(Game.RSession) {
Game.RSession->beforeDraw();
}
glfwPollEvents(); glfwPollEvents();
VkResult err; VkResult err;
@@ -314,6 +310,10 @@ void Vulkan::run()
vkAssert(!vkBeginCommandBuffer(Graphics.CommandBufferRender, &cmd_buf_info)); vkAssert(!vkBeginCommandBuffer(Graphics.CommandBufferRender, &cmd_buf_info));
} }
if(Game.RSession) {
Game.RSession->beforeDraw();
}
{ {
VkImageMemoryBarrier image_memory_barrier = VkImageMemoryBarrier image_memory_barrier =
{ {
@@ -602,6 +602,8 @@ void Vulkan::run()
// Насильно ожидаем завершения рендера кадра // Насильно ожидаем завершения рендера кадра
vkWaitForFences(Graphics.Device, 1, &drawEndFence, true, -1); vkWaitForFences(Graphics.Device, 1, &drawEndFence, true, -1);
vkResetFences(Graphics.Device, 1, &drawEndFence); vkResetFences(Graphics.Device, 1, &drawEndFence);
if(Game.RSession)
Game.RSession->onGpuFinished();
} }
{ {

View File

@@ -211,7 +211,7 @@ void ChunkMeshGenerator::run(uint8_t id) {
} else { } else {
for(int z = 0; z < 16; z++) for(int z = 0; z < 16; z++)
for(int y = 0; y < 16; y++) for(int y = 0; y < 16; y++)
fullNodes[17][y+1][z+1] = 1; fullNodes[17][y+1][z+1] = 0;
} }
if(chunks[1]) { if(chunks[1]) {
@@ -223,7 +223,7 @@ void ChunkMeshGenerator::run(uint8_t id) {
} else { } else {
for(int z = 0; z < 16; z++) for(int z = 0; z < 16; z++)
for(int y = 0; y < 16; y++) for(int y = 0; y < 16; y++)
fullNodes[0][y+1][z+1] = 1; fullNodes[0][y+1][z+1] = 0;
} }
if(chunks[2]) { if(chunks[2]) {
@@ -235,7 +235,7 @@ void ChunkMeshGenerator::run(uint8_t id) {
} else { } else {
for(int z = 0; z < 16; z++) for(int z = 0; z < 16; z++)
for(int x = 0; x < 16; x++) for(int x = 0; x < 16; x++)
fullNodes[x+1][17][z+1] = 1; fullNodes[x+1][17][z+1] = 0;
} }
if(chunks[3]) { if(chunks[3]) {
@@ -247,7 +247,7 @@ void ChunkMeshGenerator::run(uint8_t id) {
} else { } else {
for(int z = 0; z < 16; z++) for(int z = 0; z < 16; z++)
for(int x = 0; x < 16; x++) for(int x = 0; x < 16; x++)
fullNodes[x+1][0][z+1] = 1; fullNodes[x+1][0][z+1] = 0;
} }
if(chunks[4]) { if(chunks[4]) {
@@ -259,7 +259,7 @@ void ChunkMeshGenerator::run(uint8_t id) {
} else { } else {
for(int y = 0; y < 16; y++) for(int y = 0; y < 16; y++)
for(int x = 0; x < 16; x++) for(int x = 0; x < 16; x++)
fullNodes[x+1][y+1][17] = 1; fullNodes[x+1][y+1][17] = 0;
} }
if(chunks[5]) { if(chunks[5]) {
@@ -271,7 +271,7 @@ void ChunkMeshGenerator::run(uint8_t id) {
} else { } else {
for(int y = 0; y < 16; y++) for(int y = 0; y < 16; y++)
for(int x = 0; x < 16; x++) for(int x = 0; x < 16; x++)
fullNodes[x+0][y+1][0] = 1; fullNodes[x+0][y+1][0] = 0;
} }
} else } else
goto end; goto end;
@@ -307,6 +307,72 @@ void ChunkMeshGenerator::run(uint8_t id) {
NodeVertexStatic v; NodeVertexStatic v;
std::memset(&v, 0, sizeof(v)); std::memset(&v, 0, sizeof(v));
struct ModelCacheEntry {
std::vector<std::vector<std::pair<float, std::unordered_map<EnumFace, std::vector<NodeVertexStatic>>>>> Routes;
};
std::unordered_map<uint32_t, ModelCacheEntry> modelCache;
std::unordered_map<AssetsTexture, uint16_t> baseTextureCache;
std::vector<NodeStateInfo> metaStatesInfo;
{
NodeStateInfo info;
info.Name = "meta";
info.Variations = 256;
metaStatesInfo.push_back(std::move(info));
}
auto isFaceCovered = [&](EnumFace face, int covered) -> bool {
switch(face) {
case EnumFace::Up: return covered & (1 << 2);
case EnumFace::Down: return covered & (1 << 3);
case EnumFace::East: return covered & (1 << 0);
case EnumFace::West: return covered & (1 << 1);
case EnumFace::South: return covered & (1 << 4);
case EnumFace::North: return covered & (1 << 5);
default: return false;
}
};
auto pickVariant = [&](const std::vector<std::pair<float, std::unordered_map<EnumFace, std::vector<NodeVertexStatic>>>>& variants, uint32_t seed)
-> const std::unordered_map<EnumFace, std::vector<NodeVertexStatic>>*
{
if(variants.empty())
return nullptr;
float total = 0.0f;
for(const auto& entry : variants)
total += std::max(0.0f, entry.first);
if(total <= 0.0f)
return &variants.front().second;
float r = (seed % 10000u) / 10000.0f * total;
float accum = 0.0f;
for(const auto& entry : variants) {
accum += std::max(0.0f, entry.first);
if(r <= accum)
return &entry.second;
}
return &variants.back().second;
};
auto appendModel = [&](const std::unordered_map<EnumFace, std::vector<NodeVertexStatic>>& faces, int covered, int x, int y, int z) {
for(const auto& [face, verts] : faces) {
if(face != EnumFace::None && isFaceCovered(face, covered))
continue;
for(const NodeVertexStatic& baseVert : verts) {
NodeVertexStatic vert = baseVert;
vert.FX = uint32_t(vert.FX + x * 64);
vert.FY = uint32_t(vert.FY + y * 64);
vert.FZ = uint32_t(vert.FZ + z * 64);
result.NodeVertexs.push_back(vert);
}
}
};
// Сбор вершин // Сбор вершин
for(int z = 0; z < 16; z++) for(int z = 0; z < 16; z++)
for(int y = 0; y < 16; y++) for(int y = 0; y < 16; y++)
@@ -323,208 +389,259 @@ void ChunkMeshGenerator::run(uint8_t id) {
if(fullCovered == 0b111111) if(fullCovered == 0b111111)
continue; continue;
const DefNode_t* node = getNodeProfile((*chunk)[x+y*16+z*16*16].NodeId); const Node& nodeData = (*chunk)[x+y*16+z*16*16];
const DefNode_t* node = getNodeProfile(nodeData.NodeId);
bool usedModel = false;
if(NSP && node->NodestateId != 0) {
auto iterCache = modelCache.find(nodeData.Data);
if(iterCache == modelCache.end()) {
std::unordered_map<std::string, int32_t> states;
states.emplace("meta", nodeData.Meta);
ModelCacheEntry entry;
entry.Routes = NSP->getModelsForNode(node->NodestateId, metaStatesInfo, states);
iterCache = modelCache.emplace(nodeData.Data, std::move(entry)).first;
}
if(!iterCache->second.Routes.empty()) {
uint32_t seed = uint32_t(nodeData.Data) * 2654435761u;
seed ^= uint32_t(x) * 73856093u;
seed ^= uint32_t(y) * 19349663u;
seed ^= uint32_t(z) * 83492791u;
for(size_t routeIndex = 0; routeIndex < iterCache->second.Routes.size(); routeIndex++) {
const auto& variants = iterCache->second.Routes[routeIndex];
const auto* faces = pickVariant(variants, seed + uint32_t(routeIndex) * 374761393u);
if(faces)
appendModel(*faces, fullCovered, x, y, z);
}
usedModel = true;
}
}
if(usedModel)
continue;
if(NSP && node->TexId != 0) {
auto iterTex = baseTextureCache.find(node->TexId);
if(iterTex != baseTextureCache.end()) {
v.Tex = iterTex->second;
} else {
uint16_t resolvedTex = NSP->getTextureId(node->TexId);
v.Tex = resolvedTex;
baseTextureCache.emplace(node->TexId, resolvedTex);
}
} else {
v.Tex = node->TexId; v.Tex = node->TexId;
}
if(v.Tex == 0) if(v.Tex == 0)
continue; continue;
// Рендерим обычный кубоид // Рендерим обычный кубоид
// XZ+Y
if(!(fullCovered & 0b000100)) { if(!(fullCovered & 0b000100)) {
v.FX = 224+x*16; v.FX = 224+x*64;
v.FY = 224+y*16+16; v.FY = 224+y*64+64;
v.FZ = 224+z*16+16; v.FZ = 224+z*64+64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX += 16; v.FX += 64;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FZ -= 16; v.FZ -= 64;
v.TV = 65535; v.TV = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX = 224+x*16; v.FX = 224+x*64;
v.FZ = 224+z*16+16; v.FZ = 224+z*64+64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX += 16; v.FX += 64;
v.FZ -= 16; v.FZ -= 64;
v.TV = 65535; v.TV = 65535;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX -= 16; v.FX -= 64;
v.TU = 0; v.TU = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
} }
// XZ-Y
if(!(fullCovered & 0b001000)) { if(!(fullCovered & 0b001000)) {
v.FX = 224+x*16; v.FX = 224+x*64;
v.FY = 224+y*16; v.FY = 224+y*64;
v.FZ = 224+z*16+16; v.FZ = 224+z*64+64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FZ -= 16; v.FZ -= 64;
v.TV = 65535; v.TV = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX += 16; v.FX += 64;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX = 224+x*16; v.FX = 224+x*64;
v.FZ = 224+z*16+16; v.FZ = 224+z*64+64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX += 16; v.FX += 64;
v.FZ -= 16; v.FZ -= 64;
v.TV = 65535; v.TV = 65535;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FZ += 16; v.FZ += 64;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
} }
//YZ+X
if(!(fullCovered & 0b000001)) { if(!(fullCovered & 0b000001)) {
v.FX = 224+x*16+16; v.FX = 224+x*64+64;
v.FY = 224+y*16; v.FY = 224+y*64;
v.FZ = 224+z*16+16; v.FZ = 224+z*64+64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FZ -= 16; v.FZ -= 64;
v.TV = 65535; v.TV = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY += 16; v.FY += 64;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY = 224+y*16; v.FY = 224+y*64;
v.FZ = 224+z*16+16; v.FZ = 224+z*64+64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY += 16; v.FY += 64;
v.FZ -= 16; v.FZ -= 64;
v.TV = 65535; v.TV = 65535;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FZ += 16; v.FZ += 64;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
} }
//YZ-X
if(!(fullCovered & 0b000010)) { if(!(fullCovered & 0b000010)) {
v.FX = 224+x*16; v.FX = 224+x*64;
v.FY = 224+y*16; v.FY = 224+y*64;
v.FZ = 224+z*16+16; v.FZ = 224+z*64+64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY += 16; v.FY += 64;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FZ -= 16; v.FZ -= 64;
v.TV = 65535; v.TV = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY = 224+y*16; v.FY = 224+y*64;
v.FZ = 224+z*16+16; v.FZ = 224+z*64+64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY += 16; v.FY += 64;
v.FZ -= 16; v.FZ -= 64;
v.TV = 65535; v.TV = 65535;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY -= 16; v.FY -= 64;
v.TU = 0; v.TU = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
} }
//XY+Z
if(!(fullCovered & 0b010000)) { if(!(fullCovered & 0b010000)) {
v.FX = 224+x*16; v.FX = 224+x*64;
v.FY = 224+y*16; v.FY = 224+y*64;
v.FZ = 224+z*16+16; v.FZ = 224+z*64+64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX += 16; v.FX += 64;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY += 16; v.FY += 64;
v.TV = 65535; v.TV = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX = 224+x*16; v.FX = 224+x*64;
v.FY = 224+y*16; v.FY = 224+y*64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX += 16; v.FX += 64;
v.FY += 16; v.FY += 64;
v.TV = 65535; v.TV = 65535;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX -= 16; v.FX -= 64;
v.TU = 0; v.TU = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
} }
// XY-Z
if(!(fullCovered & 0b100000)) { if(!(fullCovered & 0b100000)) {
v.FX = 224+x*16; v.FX = 224+x*64;
v.FY = 224+y*16; v.FY = 224+y*64;
v.FZ = 224+z*16; v.FZ = 224+z*64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY += 16; v.FY += 64;
v.TV = 65535; v.TV = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX += 16; v.FX += 64;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX = 224+x*16; v.FX = 224+x*64;
v.FY = 224+y*16; v.FY = 224+y*64;
v.TU = 0; v.TU = 0;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FX += 16; v.FX += 64;
v.FY += 16; v.FY += 64;
v.TV = 65535; v.TV = 65535;
v.TU = 65535; v.TU = 65535;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
v.FY -= 16; v.FY -= 64;
v.TV = 0; v.TV = 0;
result.NodeVertexs.push_back(v); result.NodeVertexs.push_back(v);
} }
@@ -563,7 +680,6 @@ void ChunkMeshGenerator::run(uint8_t id) {
} }
} }
} }
end: end:
Output.lock()->emplace_back(std::move(result)); Output.lock()->emplace_back(std::move(result));
@@ -588,10 +704,74 @@ void ChunkPreparator::tickSync(const TickSyncData& data) {
// Пересчёт соседних чанков // Пересчёт соседних чанков
// Проверить необходимость пересчёта чанков при изменении профилей // Проверить необходимость пересчёта чанков при изменении профилей
std::unordered_map<WorldId_t, std::vector<Pos::GlobalChunk>> changedChunks = data.ChangedChunks;
if(!data.ChangedNodes.empty()) {
std::unordered_set<DefNodeId> changedNodes(data.ChangedNodes.begin(), data.ChangedNodes.end());
for(const auto& [wId, regions] : ChunksMesh) {
for(const auto& [rPos, chunks] : regions) {
Pos::GlobalChunk base = Pos::GlobalChunk(rPos) << 2;
for(size_t index = 0; index < chunks.size(); index++) {
const ChunkObj_t& chunk = chunks[index];
if(chunk.Nodes.empty())
continue;
bool hit = false;
for(DefNodeId nodeId : chunk.Nodes) {
if(changedNodes.contains(nodeId)) {
hit = true;
break;
}
}
if(!hit)
continue;
Pos::bvec4u localPos;
localPos.unpack(index);
changedChunks[wId].push_back(base + Pos::GlobalChunk(localPos));
}
}
}
}
if(!data.ChangedVoxels.empty()) {
std::unordered_set<DefVoxelId> changedVoxels(data.ChangedVoxels.begin(), data.ChangedVoxels.end());
for(const auto& [wId, regions] : ChunksMesh) {
for(const auto& [rPos, chunks] : regions) {
Pos::GlobalChunk base = Pos::GlobalChunk(rPos) << 2;
for(size_t index = 0; index < chunks.size(); index++) {
const ChunkObj_t& chunk = chunks[index];
if(chunk.Voxels.empty())
continue;
bool hit = false;
for(DefVoxelId voxelId : chunk.Voxels) {
if(changedVoxels.contains(voxelId)) {
hit = true;
break;
}
}
if(!hit)
continue;
Pos::bvec4u localPos;
localPos.unpack(index);
changedChunks[wId].push_back(base + Pos::GlobalChunk(localPos));
}
}
}
}
// Добавляем к изменёным чанкам пересчёт соседей // Добавляем к изменёным чанкам пересчёт соседей
{ {
std::vector<std::tuple<WorldId_t, Pos::GlobalChunk, uint32_t>> toBuild; std::vector<std::tuple<WorldId_t, Pos::GlobalChunk, uint32_t>> toBuild;
for(auto& [wId, chunks] : data.ChangedChunks) { for(auto& [wId, chunks] : changedChunks) {
std::vector<Pos::GlobalChunk> list; std::vector<Pos::GlobalChunk> list;
for(const Pos::GlobalChunk& pos : chunks) { for(const Pos::GlobalChunk& pos : chunks) {
list.push_back(pos); list.push_back(pos);
@@ -683,11 +863,6 @@ void ChunkPreparator::tickSync(const TickSyncData& data) {
} }
} }
VertexPool_Voxels.update(CMDPool);
VertexPool_Nodes.update(CMDPool);
IndexPool_Nodes_16.update(CMDPool);
IndexPool_Nodes_32.update(CMDPool);
CMG.endTickSync(); CMG.endTickSync();
} }
@@ -824,7 +999,7 @@ VulkanRenderSession::VulkanRenderSession(Vulkan *vkInst, IServerSession *serverS
: VkInst(vkInst), : VkInst(vkInst),
ServerSession(serverSession), ServerSession(serverSession),
CP(vkInst, serverSession), CP(vkInst, serverSession),
MainTest(vkInst), LightDummy(vkInst), LightDummy(vkInst),
TestQuad(vkInst, sizeof(NodeVertexStatic)*6*3*2) TestQuad(vkInst, sizeof(NodeVertexStatic)*6*3*2)
{ {
assert(vkInst); assert(vkInst);
@@ -849,49 +1024,9 @@ VulkanRenderSession::VulkanRenderSession(Vulkan *vkInst, IServerSession *serverS
&DescriptorPool)); &DescriptorPool));
} }
{ TP = std::make_unique<TextureProvider>(VkInst, DescriptorPool);
std::vector<VkDescriptorSetLayoutBinding> shaderLayoutBindings = NSP = std::make_unique<NodestateProvider>(MP, *TP);
{ CP.setNodestateProvider(NSP.get());
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = nullptr
}, {
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = nullptr
}
};
const VkDescriptorSetLayoutCreateInfo descriptorLayout =
{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.bindingCount = (uint32_t) shaderLayoutBindings.size(),
.pBindings = shaderLayoutBindings.data()
};
vkAssert(!vkCreateDescriptorSetLayout(
VkInst->Graphics.Device, &descriptorLayout, nullptr, &MainAtlasDescLayout));
}
{
VkDescriptorSetAllocateInfo ciAllocInfo =
{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.pNext = nullptr,
.descriptorPool = DescriptorPool,
.descriptorSetCount = 1,
.pSetLayouts = &MainAtlasDescLayout
};
vkAssert(!vkAllocateDescriptorSets(VkInst->Graphics.Device, &ciAllocInfo, &MainAtlasDescriptor));
}
{ {
std::vector<VkDescriptorSetLayoutBinding> shaderLayoutBindings = std::vector<VkDescriptorSetLayoutBinding> shaderLayoutBindings =
@@ -937,39 +1072,11 @@ VulkanRenderSession::VulkanRenderSession(Vulkan *vkInst, IServerSession *serverS
} }
MainTest.atlasAddCallbackOnUniformChange([this]() -> bool {
updateDescriptor_MainAtlas();
return true;
});
LightDummy.atlasAddCallbackOnUniformChange([this]() -> bool { LightDummy.atlasAddCallbackOnUniformChange([this]() -> bool {
updateDescriptor_VoxelsLight(); updateDescriptor_VoxelsLight();
return true; return true;
}); });
{
uint16_t texId = MainTest.atlasAddTexture(2, 2);
uint32_t colors[4] = {0xfffffffful, 0x00fffffful, 0xffffff00ul, 0xff00fffful};
MainTest.atlasChangeTextureData(texId, (const uint32_t*) colors);
}
{
int width, height;
bool hasAlpha;
for(const char *path : {
"grass.png",
"willow_wood.png",
"tropical_rainforest_wood.png",
"xnether_blue_wood.png",
"xnether_purple_wood.png",
"frame.png"
}) {
ByteBuffer image = VK::loadPNG(getResource(std::string("textures/") + path)->makeStream().Stream, width, height, hasAlpha);
uint16_t texId = MainTest.atlasAddTexture(width, height);
MainTest.atlasChangeTextureData(texId, (const uint32_t*) image.data());
}
}
/* /*
x left -1 ~ right 1 x left -1 ~ right 1
y up 1 ~ down -1 y up 1 ~ down -1
@@ -981,47 +1088,47 @@ VulkanRenderSession::VulkanRenderSession(Vulkan *vkInst, IServerSession *serverS
{ {
NodeVertexStatic *array = (NodeVertexStatic*) TestQuad.mapMemory(); NodeVertexStatic *array = (NodeVertexStatic*) TestQuad.mapMemory();
array[0] = {135, 135, 135, 0, 0, 0, 0, 65535, 0}; array[0] = {224, 224, 0, 224, 0, 0, 0, 65535, 0};
array[1] = {135, 135+16, 135, 0, 0, 0, 0, 0, 65535}; array[1] = {224, 224+64, 0, 224, 0, 0, 0, 0, 65535};
array[2] = {135+16, 135+16, 135, 0, 0, 0, 0, 0, 65535}; array[2] = {224+64, 224+64, 0, 224, 0, 0, 0, 0, 65535};
array[3] = {135, 135, 135, 0, 0, 0, 0, 65535, 0}; array[3] = {224, 224, 0, 224, 0, 0, 0, 65535, 0};
array[4] = {135+16, 135+16, 135, 0, 0, 0, 0, 0, 65535}; array[4] = {224+64, 224+64, 0, 224, 0, 0, 0, 0, 65535};
array[5] = {135+16, 135, 135, 0, 0, 0, 0, 0, 0}; array[5] = {224+64, 224, 0, 224, 0, 0, 0, 0, 0};
array[6] = {135, 135, 135+16, 0, 0, 0, 0, 0, 0}; array[6] = {224, 224, 0, 224+64, 0, 0, 0, 0, 0};
array[7] = {135+16, 135, 135+16, 0, 0, 0, 0, 65535, 0}; array[7] = {224+64, 224, 0, 224+64, 0, 0, 0, 65535, 0};
array[8] = {135+16, 135+16, 135+16, 0, 0, 0, 0, 65535, 65535}; array[8] = {224+64, 224+64, 0, 224+64, 0, 0, 0, 65535, 65535};
array[9] = {135, 135, 135+16, 0, 0, 0, 0, 0, 0}; array[9] = {224, 224, 0, 224+64, 0, 0, 0, 0, 0};
array[10] = {135+16, 135+16, 135+16, 0, 0, 0, 0, 65535, 65535}; array[10] = {224+64, 224+64, 0, 224+64, 0, 0, 0, 65535, 65535};
array[11] = {135, 135+16, 135+16, 0, 0, 0, 0, 0, 65535}; array[11] = {224, 224+64, 0, 224+64, 0, 0, 0, 0, 65535};
array[12] = {135, 135, 135, 0, 0, 0, 0, 0, 0}; array[12] = {224, 224, 0, 224, 0, 0, 0, 0, 0};
array[13] = {135, 135, 135+16, 0, 0, 0, 0, 65535, 0}; array[13] = {224, 224, 0, 224+64, 0, 0, 0, 65535, 0};
array[14] = {135, 135+16, 135+16, 0, 0, 0, 0, 65535, 65535}; array[14] = {224, 224+64, 0, 224+64, 0, 0, 0, 65535, 65535};
array[15] = {135, 135, 135, 0, 0, 0, 0, 0, 0}; array[15] = {224, 224, 0, 224, 0, 0, 0, 0, 0};
array[16] = {135, 135+16, 135+16, 0, 0, 0, 0, 65535, 65535}; array[16] = {224, 224+64, 0, 224+64, 0, 0, 0, 65535, 65535};
array[17] = {135, 135+16, 135, 0, 0, 0, 0, 0, 65535}; array[17] = {224, 224+64, 0, 224, 0, 0, 0, 0, 65535};
array[18] = {135+16, 135, 135+16, 0, 0, 0, 0, 0, 0}; array[18] = {224+64, 224, 0, 224+64, 0, 0, 0, 0, 0};
array[19] = {135+16, 135, 135, 0, 0, 0, 0, 65535, 0}; array[19] = {224+64, 224, 0, 224, 0, 0, 0, 65535, 0};
array[20] = {135+16, 135+16, 135, 0, 0, 0, 0, 65535, 65535}; array[20] = {224+64, 224+64, 0, 224, 0, 0, 0, 65535, 65535};
array[21] = {135+16, 135, 135+16, 0, 0, 0, 0, 0, 0}; array[21] = {224+64, 224, 0, 224+64, 0, 0, 0, 0, 0};
array[22] = {135+16, 135+16, 135, 0, 0, 0, 0, 65535, 65535}; array[22] = {224+64, 224+64, 0, 224, 0, 0, 0, 65535, 65535};
array[23] = {135+16, 135+16, 135+16, 0, 0, 0, 0, 0, 65535}; array[23] = {224+64, 224+64, 0, 224+64, 0, 0, 0, 0, 65535};
array[24] = {135, 135, 135, 0, 0, 0, 0, 0, 0}; array[24] = {224, 224, 0, 224, 0, 0, 0, 0, 0};
array[25] = {135+16, 135, 135, 0, 0, 0, 0, 65535, 0}; array[25] = {224+64, 224, 0, 224, 0, 0, 0, 65535, 0};
array[26] = {135+16, 135, 135+16, 0, 0, 0, 0, 65535, 65535}; array[26] = {224+64, 224, 0, 224+64, 0, 0, 0, 65535, 65535};
array[27] = {135, 135, 135, 0, 0, 0, 0, 0, 0}; array[27] = {224, 224, 0, 224, 0, 0, 0, 0, 0};
array[28] = {135+16, 135, 135+16, 0, 0, 0, 0, 65535, 65535}; array[28] = {224+64, 224, 0, 224+64, 0, 0, 0, 65535, 65535};
array[29] = {135, 135, 135+16, 0, 0, 0, 0, 0, 65535}; array[29] = {224, 224, 0, 224+64, 0, 0, 0, 0, 65535};
array[30] = {135, 135+16, 135+16, 0, 0, 0, 0, 0, 0}; array[30] = {224, 224+64, 0, 224+64, 0, 0, 0, 0, 0};
array[31] = {135+16, 135+16, 135+16, 0, 0, 0, 0, 65535, 0}; array[31] = {224+64, 224+64, 0, 224+64, 0, 0, 0, 65535, 0};
array[32] = {135+16, 135+16, 135, 0, 0, 0, 0, 65535, 65535}; array[32] = {224+64, 224+64, 0, 224, 0, 0, 0, 65535, 65535};
array[33] = {135, 135+16, 135+16, 0, 0, 0, 0, 0, 0}; array[33] = {224, 224+64, 0, 224+64, 0, 0, 0, 0, 0};
array[34] = {135+16, 135+16, 135, 0, 0, 0, 0, 65535, 65535}; array[34] = {224+64, 224+64, 0, 224, 0, 0, 0, 65535, 65535};
array[35] = {135, 135+16, 135, 0, 0, 0, 0, 0, 65535}; array[35] = {224, 224+64, 0, 224, 0, 0, 0, 0, 65535};
for(int iter = 0; iter < 36; iter++) { for(int iter = 0; iter < 36; iter++) {
array[iter].Tex = 6; array[iter].Tex = 6;
@@ -1067,7 +1174,6 @@ VulkanRenderSession::VulkanRenderSession(Vulkan *vkInst, IServerSession *serverS
} }
} }
updateDescriptor_MainAtlas();
updateDescriptor_VoxelsLight(); updateDescriptor_VoxelsLight();
updateDescriptor_ChunksLight(); updateDescriptor_ChunksLight();
@@ -1084,7 +1190,7 @@ VulkanRenderSession::VulkanRenderSession(Vulkan *vkInst, IServerSession *serverS
std::vector<VkDescriptorSetLayout> layouts = std::vector<VkDescriptorSetLayout> layouts =
{ {
MainAtlasDescLayout, TP ? TP->getDescriptorLayout() : VK_NULL_HANDLE,
VoxelLightMapDescLayout VoxelLightMapDescLayout
}; };
@@ -1434,8 +1540,6 @@ VulkanRenderSession::~VulkanRenderSession() {
if(MainAtlas_LightMap_PipelineLayout) if(MainAtlas_LightMap_PipelineLayout)
vkDestroyPipelineLayout(VkInst->Graphics.Device, MainAtlas_LightMap_PipelineLayout, nullptr); vkDestroyPipelineLayout(VkInst->Graphics.Device, MainAtlas_LightMap_PipelineLayout, nullptr);
if(MainAtlasDescLayout)
vkDestroyDescriptorSetLayout(VkInst->Graphics.Device, MainAtlasDescLayout, nullptr);
if(VoxelLightMapDescLayout) if(VoxelLightMapDescLayout)
vkDestroyDescriptorSetLayout(VkInst->Graphics.Device, VoxelLightMapDescLayout, nullptr); vkDestroyDescriptorSetLayout(VkInst->Graphics.Device, VoxelLightMapDescLayout, nullptr);
@@ -1459,36 +1563,93 @@ void VulkanRenderSession::tickSync(const TickSyncData& data) {
ChunkPreparator::TickSyncData mcpData; ChunkPreparator::TickSyncData mcpData;
mcpData.ChangedChunks = data.Chunks_ChangeOrAdd; mcpData.ChangedChunks = data.Chunks_ChangeOrAdd;
mcpData.LostRegions = data.Chunks_Lost; mcpData.LostRegions = data.Chunks_Lost;
if(auto iter = data.Profiles_ChangeOrAdd.find(EnumDefContent::Node); iter != data.Profiles_ChangeOrAdd.end())
mcpData.ChangedNodes.insert(mcpData.ChangedNodes.end(), iter->second.begin(), iter->second.end());
if(auto iter = data.Profiles_Lost.find(EnumDefContent::Node); iter != data.Profiles_Lost.end())
mcpData.ChangedNodes.insert(mcpData.ChangedNodes.end(), iter->second.begin(), iter->second.end());
if(auto iter = data.Profiles_ChangeOrAdd.find(EnumDefContent::Voxel); iter != data.Profiles_ChangeOrAdd.end())
mcpData.ChangedVoxels.insert(mcpData.ChangedVoxels.end(), iter->second.begin(), iter->second.end());
if(auto iter = data.Profiles_Lost.find(EnumDefContent::Voxel); iter != data.Profiles_Lost.end())
mcpData.ChangedVoxels.insert(mcpData.ChangedVoxels.end(), iter->second.begin(), iter->second.end());
std::vector<std::tuple<AssetsModel, Resource>> modelResources;
std::vector<AssetsModel> modelLost;
if(auto iter = data.Assets_ChangeOrAdd.find(EnumAssets::Model); iter != data.Assets_ChangeOrAdd.end()) {
const auto& list = ServerSession->Assets[EnumAssets::Model];
for(ResourceId id : iter->second) {
auto entryIter = list.find(id);
if(entryIter == list.end())
continue;
modelResources.emplace_back(id, entryIter->second.Res);
}
}
if(auto iter = data.Assets_Lost.find(EnumAssets::Model); iter != data.Assets_Lost.end())
modelLost.insert(modelLost.end(), iter->second.begin(), iter->second.end());
std::vector<AssetsModel> changedModels;
if(!modelResources.empty() || !modelLost.empty())
changedModels = MP.onModelChanges(std::move(modelResources), std::move(modelLost));
if(TP) {
std::vector<std::tuple<AssetsTexture, Resource>> textureResources;
std::vector<AssetsTexture> textureLost;
if(auto iter = data.Assets_ChangeOrAdd.find(EnumAssets::Texture); iter != data.Assets_ChangeOrAdd.end()) {
const auto& list = ServerSession->Assets[EnumAssets::Texture];
for(ResourceId id : iter->second) {
auto entryIter = list.find(id);
if(entryIter == list.end())
continue;
textureResources.emplace_back(id, entryIter->second.Res);
}
}
if(auto iter = data.Assets_Lost.find(EnumAssets::Texture); iter != data.Assets_Lost.end())
textureLost.insert(textureLost.end(), iter->second.begin(), iter->second.end());
if(!textureResources.empty() || !textureLost.empty())
TP->onTexturesChanges(std::move(textureResources), std::move(textureLost));
}
std::vector<AssetsNodestate> changedNodestates;
if(NSP) {
std::vector<std::tuple<AssetsNodestate, Resource>> nodestateResources;
std::vector<AssetsNodestate> nodestateLost;
if(auto iter = data.Assets_ChangeOrAdd.find(EnumAssets::Nodestate); iter != data.Assets_ChangeOrAdd.end()) {
const auto& list = ServerSession->Assets[EnumAssets::Nodestate];
for(ResourceId id : iter->second) {
auto entryIter = list.find(id);
if(entryIter == list.end())
continue;
nodestateResources.emplace_back(id, entryIter->second.Res);
}
}
if(auto iter = data.Assets_Lost.find(EnumAssets::Nodestate); iter != data.Assets_Lost.end())
nodestateLost.insert(nodestateLost.end(), iter->second.begin(), iter->second.end());
if(!nodestateResources.empty() || !nodestateLost.empty() || !changedModels.empty())
changedNodestates = NSP->onNodestateChanges(std::move(nodestateResources), std::move(nodestateLost), changedModels);
}
if(!changedNodestates.empty()) {
std::unordered_set<AssetsNodestate> changed;
changed.reserve(changedNodestates.size());
for(AssetsNodestate id : changedNodestates)
changed.insert(id);
for(const auto& [nodeId, def] : ServerSession->Profiles.DefNode) {
if(changed.contains(def.NodestateId))
mcpData.ChangedNodes.push_back(nodeId);
}
}
CP.tickSync(mcpData); CP.tickSync(mcpData);
{
std::vector<std::tuple<ResourceId, Resource>> resources;
std::vector<ResourceId> lost;
for(const auto& [type, ids] : data.Assets_ChangeOrAdd) {
if(type != EnumAssets::Model)
continue;
const auto& list = ServerSession->Assets[type];
for(ResourceId id : ids) {
auto iter = list.find(id);
if(iter == list.end())
continue;
resources.emplace_back(id, iter->second.Res);
}
}
for(const auto& [type, ids] : data.Assets_Lost) {
if(type != EnumAssets::Model)
continue;
lost.append_range(ids);
}
if(!resources.empty() || !lost.empty())
MP.onModelChanges(std::move(resources), std::move(lost));
}
} }
void VulkanRenderSession::setCameraPos(WorldId_t worldId, Pos::Object pos, glm::quat quat) { void VulkanRenderSession::setCameraPos(WorldId_t worldId, Pos::Object pos, glm::quat quat) {
@@ -1502,8 +1663,14 @@ void VulkanRenderSession::setCameraPos(WorldId_t worldId, Pos::Object pos, glm::
} }
void VulkanRenderSession::beforeDraw() { void VulkanRenderSession::beforeDraw() {
MainTest.atlasUpdateDynamicData(); if(TP)
TP->update();
LightDummy.atlasUpdateDynamicData(); LightDummy.atlasUpdateDynamicData();
CP.flushUploadsAndBarriers(VkInst->Graphics.CommandBufferRender);
}
void VulkanRenderSession::onGpuFinished() {
CP.notifyGpuFinished();
} }
void VulkanRenderSession::drawWorld(GlobalTime gTime, float dTime, VkCommandBuffer drawCmd) { void VulkanRenderSession::drawWorld(GlobalTime gTime, float dTime, VkCommandBuffer drawCmd) {
@@ -1643,7 +1810,7 @@ void VulkanRenderSession::drawWorld(GlobalTime gTime, float dTime, VkCommandBuff
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_GEOMETRY_BIT, 0, sizeof(WorldPCO), &PCO); VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_GEOMETRY_BIT, 0, sizeof(WorldPCO), &PCO);
vkCmdBindDescriptorSets(drawCmd, VK_PIPELINE_BIND_POINT_GRAPHICS, vkCmdBindDescriptorSets(drawCmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
MainAtlas_LightMap_PipelineLayout, 0, 2, MainAtlas_LightMap_PipelineLayout, 0, 2,
(const VkDescriptorSet[]) {MainAtlasDescriptor, VoxelLightMapDescriptor}, 0, nullptr); (const VkDescriptorSet[]) {TP ? TP->getDescriptorSet() : VK_NULL_HANDLE, VoxelLightMapDescriptor}, 0, nullptr);
{ {
// glm::vec4 offset = glm::inverse(Quat)*glm::vec4(0, 0, -64, 1); // glm::vec4 offset = glm::inverse(Quat)*glm::vec4(0, 0, -64, 1);
@@ -1662,13 +1829,13 @@ void VulkanRenderSession::drawWorld(GlobalTime gTime, float dTime, VkCommandBuff
auto [voxelVertexs, nodeVertexs] = CP.getChunksForRender(WorldId, Pos, 1, PCO.ProjView, x64offset_region); auto [voxelVertexs, nodeVertexs] = CP.getChunksForRender(WorldId, Pos, 1, PCO.ProjView, x64offset_region);
{ // {
static uint32_t l = TOS::Time::getSeconds(); // static uint32_t l = TOS::Time::getSeconds();
if(l != TOS::Time::getSeconds()) { // if(l != TOS::Time::getSeconds()) {
l = TOS::Time::getSeconds(); // l = TOS::Time::getSeconds();
TOS::Logger("Test").debug() << nodeVertexs.size(); // TOS::Logger("Test").debug() << nodeVertexs.size();
} // }
} // }
size_t count = 0; size_t count = 0;
@@ -1789,36 +1956,6 @@ std::vector<VoxelVertexPoint> VulkanRenderSession::generateMeshForVoxelChunks(co
return out; return out;
} }
void VulkanRenderSession::updateDescriptor_MainAtlas() {
VkDescriptorBufferInfo bufferInfo = MainTest;
VkDescriptorImageInfo imageInfo = MainTest;
std::vector<VkWriteDescriptorSet> ciDescriptorSet =
{
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = MainAtlasDescriptor,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = &imageInfo
}, {
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = MainAtlasDescriptor,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo
}
};
vkUpdateDescriptorSets(VkInst->Graphics.Device, ciDescriptorSet.size(), ciDescriptorSet.data(), 0, nullptr);
}
void VulkanRenderSession::updateDescriptor_VoxelsLight() { void VulkanRenderSession::updateDescriptor_VoxelsLight() {
VkDescriptorBufferInfo bufferInfo = LightDummy; VkDescriptorBufferInfo bufferInfo = LightDummy;
VkDescriptorImageInfo imageInfo = LightDummy; VkDescriptorImageInfo imageInfo = LightDummy;

View File

@@ -7,6 +7,7 @@
#include <bitset> #include <bitset>
#include <condition_variable> #include <condition_variable>
#include <functional> #include <functional>
#include <limits>
#include <memory> #include <memory>
#include <mutex> #include <mutex>
#include <optional> #include <optional>
@@ -18,6 +19,7 @@
#include <utility> #include <utility>
#include <variant> #include <variant>
#include <vulkan/vulkan_core.h> #include <vulkan/vulkan_core.h>
#include "Client/Vulkan/AtlasPipeline/PipelinedTextureAtlas.hpp"
#include "Abstract.hpp" #include "Abstract.hpp"
#include "TOSLib.hpp" #include "TOSLib.hpp"
#include "VertexPool.hpp" #include "VertexPool.hpp"
@@ -243,7 +245,7 @@ public:
continue; continue;
} }
Models.insert({key, std::move(model)}); Models.insert_or_assign(key, std::move(model));
} }
std::sort(result.begin(), result.end()); std::sort(result.begin(), result.end());
@@ -388,63 +390,11 @@ private:
Хранить все текстуры в оперативке Хранить все текстуры в оперативке
*/ */
class TextureProvider { class TextureProvider {
// Хедер для атласа перед описанием текстур
struct alignas(16) UniformInfo {
uint32_t
// Количество текстур
SubsCount,
// Счётчик времени с разрешением 8 бит в секунду
Counter,
// Размер атласа
Size;
// Дальше в шейдере массив на описания текстур
// std::vector<InfoSubTexture> SubsInfo;
};
// Описание текстуры на стороне шейдера
struct alignas(16) InfoSubTexture {
uint32_t isExist = 0;
uint32_t
// Точная позиция в атласе
PosX = 0, PosY = 0, PosZ = 0,
// Размер текстуры в атласе
Width = 0, Height = 0;
struct {
uint16_t Enabled : 1 = 0, Frames : 15 = 0;
uint16_t TimePerFrame = 0;
} Animation;
};
public: public:
TextureProvider(Vulkan* inst, VkDescriptorPool descPool) TextureProvider(Vulkan* inst, VkDescriptorPool descPool)
: Inst(inst), DescPool(descPool) : Inst(inst), DescPool(descPool)
{ {
{ assert(inst);
const VkSamplerCreateInfo ciSampler =
{
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.magFilter = VK_FILTER_NEAREST,
.minFilter = VK_FILTER_NEAREST,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.mipLodBias = 0.0f,
.anisotropyEnable = VK_FALSE,
.maxAnisotropy = 1,
.compareEnable = 0,
.compareOp = VK_COMPARE_OP_NEVER,
.minLod = 0.0f,
.maxLod = 0.0f,
.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE,
.unnormalizedCoordinates = VK_FALSE
};
vkAssert(!vkCreateSampler(inst->Graphics.Device, &ciSampler, nullptr, &Sampler));
}
{ {
std::vector<VkDescriptorSetLayoutBinding> shaderLayoutBindings = std::vector<VkDescriptorSetLayoutBinding> shaderLayoutBindings =
@@ -478,389 +428,249 @@ public:
} }
{ {
Atlases.resize(BackupAtlasCount);
VkDescriptorSetAllocateInfo ciAllocInfo = VkDescriptorSetAllocateInfo ciAllocInfo =
{ {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.pNext = nullptr, .pNext = nullptr,
.descriptorPool = descPool, .descriptorPool = DescPool,
.descriptorSetCount = (uint32_t) Atlases.size(), .descriptorSetCount = 1,
.pSetLayouts = &DescLayout .pSetLayouts = &DescLayout
}; };
std::vector<VkDescriptorSet> descriptors; vkAssert(!vkAllocateDescriptorSets(Inst->Graphics.Device, &ciAllocInfo, &Descriptor));
descriptors.resize(Atlases.size());
vkAssert(!vkAllocateDescriptorSets(inst->Graphics.Device, &ciAllocInfo, descriptors.data()));
for(auto& atlas : Atlases) {
atlas.recreate(Inst, true);
atlas.Descriptor = descriptors.back();
descriptors.pop_back();
}
} }
{ {
VkSemaphoreCreateInfo semaphoreCreateInfo = { TextureAtlas::Config cfg;
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, cfg.MaxTextureId = 1 << 18;
AtlasStaging = std::make_shared<SharedStagingBuffer>(
Inst->Graphics.Device,
Inst->Graphics.PhysicalDevice
);
Atlas = std::make_unique<PipelinedTextureAtlas>(
TextureAtlas(Inst->Graphics.Device, Inst->Graphics.PhysicalDevice, cfg, {}, AtlasStaging)
);
}
{
const VkFenceCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
.pNext = nullptr, .pNext = nullptr,
.flags = 0 .flags = 0
}; };
vkAssert(!vkCreateSemaphore(Inst->Graphics.Device, &semaphoreCreateInfo, nullptr, &SendChanges)); vkAssert(!vkCreateFence(Inst->Graphics.Device, &info, nullptr, &UpdateFence));
} }
{ NeedsUpload = true;
const VkCommandBufferAllocateInfo infoCmd =
{
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.pNext = nullptr,
.commandPool = Inst->Graphics.Pool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1
};
vkAssert(!vkAllocateCommandBuffers(Inst->Graphics.Device, &infoCmd, &CMD));
}
Cache.recreate(Inst, false);
AtlasTextureUnusedId.all();
} }
~TextureProvider() { ~TextureProvider() {
if(UpdateFence)
vkDestroyFence(Inst->Graphics.Device, UpdateFence, nullptr);
if(DescLayout) if(DescLayout)
vkDestroyDescriptorSetLayout(Inst->Graphics.Device, DescLayout, nullptr); vkDestroyDescriptorSetLayout(Inst->Graphics.Device, DescLayout, nullptr);
if(Sampler) {
vkDestroySampler(Inst->Graphics.Device, Sampler, nullptr);
Sampler = nullptr;
} }
for(auto& atlas : Atlases) { VkDescriptorSetLayout getDescriptorLayout() const {
atlas.destroy(Inst); return DescLayout;
} }
Atlases.clear(); VkDescriptorSet getDescriptorSet() const {
return Descriptor;
Cache.destroy(Inst);
Cache.unMap(Inst);
if(SendChanges) {
vkDestroySemaphore(Inst->Graphics.Device, SendChanges, nullptr);
SendChanges = nullptr;
}
if(CMD) {
vkFreeCommandBuffers(Inst->Graphics.Device, Inst->Graphics.Pool, 1, &CMD);
CMD = nullptr;
}
} }
uint16_t getTextureId(const TexturePipeline& pipe) { uint16_t getTextureId(const TexturePipeline& pipe) {
return 0; std::lock_guard lock(Mutex);
} auto iter = PipelineToAtlas.find(pipe);
if(iter != PipelineToAtlas.end())
return iter->second;
// Устанавливает новый размер единицы в массиве текстур атласа ::HashedPipeline hashed = makeHashedPipeline(pipe);
enum class EnumAtlasSize { uint32_t atlasId = Atlas->getByPipeline(hashed);
_2048 = 2048, _4096 = 4096, _8192 = 8192, _16_384 = 16'384
};
void setAtlasSize(EnumAtlasSize size) {
ReferenceSize = size;
}
// Максимальный размер выделенный под атласы в памяти устройства uint16_t result = 0;
void setDeviceMemorySize(size_t size) { if(atlasId <= std::numeric_limits<uint16_t>::max())
std::unreachable(); result = static_cast<uint16_t>(atlasId);
else
LOG.warn() << "Atlas texture id overflow: " << atlasId;
PipelineToAtlas.emplace(pipe, result);
NeedsUpload = true;
return result;
} }
// Применяет изменения, возвращая все затронутые модели // Применяет изменения, возвращая все затронутые модели
std::vector<AssetsTexture> onTexturesChanges(std::vector<std::tuple<AssetsTexture, Resource>> newOrChanged, std::vector<AssetsTexture> lost) { std::vector<AssetsTexture> onTexturesChanges(std::vector<std::tuple<AssetsTexture, Resource>> newOrChanged, std::vector<AssetsTexture> lost) {
std::lock_guard lock(Mutex);
std::vector<AssetsTexture> result; std::vector<AssetsTexture> result;
for(const auto& [key, res] : newOrChanged) { for(const auto& [key, res] : newOrChanged) {
result.push_back(key); result.push_back(key);
ChangedOrAdded.push_back(key);
TextureEntry entry;
iResource sres((const uint8_t*) res.data(), res.size()); iResource sres((const uint8_t*) res.data(), res.size());
iBinaryStream stream = sres.makeStream(); iBinaryStream stream = sres.makeStream();
png::image<png::rgba_pixel> img(stream.Stream); png::image<png::rgba_pixel> img(stream.Stream);
entry.Width = img.get_width(); uint32_t width = img.get_width();
entry.Height = img.get_height(); uint32_t height = img.get_height();
entry.RGBA.resize(4*entry.Width*entry.Height);
for(int i = 0; i < entry.Height; i++) { std::vector<uint32_t> pixels;
std::copy( pixels.resize(width*height);
((const uint32_t*) &img.get_pixbuf().operator [](i)[0]),
((const uint32_t*) &img.get_pixbuf().operator [](i)[0])+entry.Width, for(uint32_t y = 0; y < height; y++) {
((uint32_t*) entry.RGBA.data())+entry.Width*(false ? entry.Height-i-1 : i) const auto& row = img.get_pixbuf().operator [](y);
); for(uint32_t x = 0; x < width; x++) {
const auto& px = row[x];
uint32_t rgba = (uint32_t(px.alpha) << 24)
| (uint32_t(px.red) << 16)
| (uint32_t(px.green) << 8)
| uint32_t(px.blue);
pixels[x + y * width] = rgba;
}
} }
Textures[key] = std::move(entry); Atlas->updateTexture(key, StoredTexture(
static_cast<uint16_t>(width),
static_cast<uint16_t>(height),
std::move(pixels)
));
NeedsUpload = true;
} }
for(AssetsTexture key : lost) { for(AssetsTexture key : lost) {
result.push_back(key); result.push_back(key);
Lost.push_back(key); Atlas->freeTexture(key);
NeedsUpload = true;
} }
{
std::sort(result.begin(), result.end()); std::sort(result.begin(), result.end());
auto eraseIter = std::unique(result.begin(), result.end()); auto eraseIter = std::unique(result.begin(), result.end());
result.erase(eraseIter, result.end()); result.erase(eraseIter, result.end());
}
{
std::sort(ChangedOrAdded.begin(), ChangedOrAdded.end());
auto eraseIter = std::unique(ChangedOrAdded.begin(), ChangedOrAdded.end());
ChangedOrAdded.erase(eraseIter, ChangedOrAdded.end());
}
{
std::sort(Lost.begin(), Lost.end());
auto eraseIter = std::unique(Lost.begin(), Lost.end());
Lost.erase(eraseIter, Lost.end());
}
return result; return result;
} }
void update() { void update() {
// Подготовить обновления атласа std::lock_guard lock(Mutex);
// Если предыдущий освободился, то записать изменения в него if(!NeedsUpload || !Atlas)
return;
// Держать на стороне хоста полную версию атласа и все изменения писать туда Atlas->flushNewPipelines();
// Когерентная память сама разберётся что отсылать на устройство
// Синхронизировать всё из внутреннего буфера в атлас
// При пересоздании хостового буфера, скопировать всё из старого.
// Оптимизации копирования при указании конкретных изменённых слоёв? VkCommandBufferAllocateInfo allocInfo {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
nullptr,
Inst->Graphics.Pool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1
};
VkCommandBuffer commandBuffer;
vkAssert(!vkAllocateCommandBuffers(Inst->Graphics.Device, &allocInfo, &commandBuffer));
VkCommandBufferBeginInfo beginInfo {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
nullptr,
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
nullptr
};
vkAssert(!vkBeginCommandBuffer(commandBuffer, &beginInfo));
TextureAtlas::DescriptorOut desc = Atlas->flushUploadsAndBarriers(commandBuffer);
vkAssert(!vkEndCommandBuffer(commandBuffer));
VkSubmitInfo submitInfo {
VK_STRUCTURE_TYPE_SUBMIT_INFO,
nullptr,
0, nullptr,
nullptr,
1,
&commandBuffer,
0,
nullptr
};
{
auto lockQueue = Inst->Graphics.DeviceQueueGraphic.lock();
vkAssert(!vkQueueSubmit(*lockQueue, 1, &submitInfo, UpdateFence));
} }
VkDescriptorSet getDescriptor() { vkAssert(!vkWaitForFences(Inst->Graphics.Device, 1, &UpdateFence, VK_TRUE, UINT64_MAX));
return Atlases[ActiveAtlas].Descriptor; vkAssert(!vkResetFences(Inst->Graphics.Device, 1, &UpdateFence));
vkFreeCommandBuffers(Inst->Graphics.Device, Inst->Graphics.Pool, 1, &commandBuffer);
Atlas->notifyGpuFinished();
updateDescriptor(desc);
NeedsUpload = false;
} }
void pushFrame() { private:
for(auto& atlas : Atlases) ::HashedPipeline makeHashedPipeline(const TexturePipeline& pipe) const {
if(atlas.NotUsedFrames < 100) ::Pipeline pipeline;
atlas.NotUsedFrames++;
Atlases[ActiveAtlas].NotUsedFrames = 0; if(!pipe.Pipeline.empty() && (pipe.Pipeline.size() % 2u) == 0u) {
std::vector<TexturePipelineProgram::Word> words;
words.reserve(pipe.Pipeline.size() / 2u);
const uint8_t* bytes = reinterpret_cast<const uint8_t*>(pipe.Pipeline.data());
for(size_t i = 0; i < pipe.Pipeline.size(); i += 2) {
uint16_t lo = bytes[i];
uint16_t hi = bytes[i + 1];
words.push_back(static_cast<TexturePipelineProgram::Word>(lo | (hi << 8)));
}
pipeline._Pipeline.assign(words.begin(), words.end());
}
// Если есть новые текстуры или они поменялись if(pipeline._Pipeline.empty()) {
// if(!pipe.BinTextures.empty())
pipeline = ::Pipeline(pipe.BinTextures.front());
}
return ::HashedPipeline(pipeline);
}
void updateDescriptor(const TextureAtlas::DescriptorOut& desc) {
VkWriteDescriptorSet writes[2] = {};
writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[0].dstSet = Descriptor;
writes[0].dstBinding = 0;
writes[0].descriptorCount = 1;
writes[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[0].pImageInfo = &desc.ImageInfo;
writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[1].dstSet = Descriptor;
writes[1].dstBinding = 1;
writes[1].descriptorCount = 1;
writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
writes[1].pBufferInfo = &desc.EntriesInfo;
vkUpdateDescriptorSets(Inst->Graphics.Device, 2, writes, 0, nullptr);
} }
private: private:
Vulkan* Inst = nullptr; Vulkan* Inst = nullptr;
VkDescriptorPool DescPool = VK_NULL_HANDLE; VkDescriptorPool DescPool = VK_NULL_HANDLE;
VkDescriptorSetLayout DescLayout = VK_NULL_HANDLE; VkDescriptorSetLayout DescLayout = VK_NULL_HANDLE;
// Для всех атласов VkDescriptorSet Descriptor = VK_NULL_HANDLE;
VkSampler Sampler = VK_NULL_HANDLE; VkFence UpdateFence = VK_NULL_HANDLE;
// Ожидание завершения работы с хостовым буфером
VkSemaphore SendChanges = VK_NULL_HANDLE;
//
VkCommandBuffer CMD = VK_NULL_HANDLE;
// Размер, которому должны соответствовать все атласы std::shared_ptr<SharedStagingBuffer> AtlasStaging;
EnumAtlasSize ReferenceSize = EnumAtlasSize::_2048; std::unique_ptr<PipelinedTextureAtlas> Atlas;
std::unordered_map<TexturePipeline, uint16_t> PipelineToAtlas;
struct TextureEntry { bool NeedsUpload = false;
uint16_t Width, Height; Logger LOG = "Client>TextureProvider";
std::vector<glm::i8vec4> RGBA; mutable std::mutex Mutex;
// Идентификатор текстуры в атласе
uint16_t InAtlasId = uint16_t(-1);
};
// Текстуры, загруженные с файлов
std::unordered_map<AssetsTexture, TextureEntry> Textures;
struct TextureFromPipeline {
};
std::unordered_map<TexturePipeline, TextureFromPipeline> Pipelines;
struct AtlasTextureEntry {
uint16_t PosX, PosY, PosZ, Width, Height;
};
std::bitset<1 << 16> AtlasTextureUnusedId;
std::unordered_map<uint16_t, AtlasTextureEntry> AtlasTextureInfo;
std::vector<AssetsTexture> ChangedOrAdded, Lost;
struct VkAtlasInfo {
VkImage Image = VK_NULL_HANDLE;
VkImageLayout ImageLayout = VK_IMAGE_LAYOUT_MAX_ENUM;
VkDeviceMemory Memory = VK_NULL_HANDLE;
VkImageView View = VK_NULL_HANDLE;
VkDescriptorSet Descriptor;
EnumAtlasSize Size = EnumAtlasSize::_2048;
uint16_t Depth = 1;
// Сколько кадров уже не используется атлас
int NotUsedFrames = 0;
void destroy(Vulkan* inst) {
if(View) {
vkDestroyImageView(inst->Graphics.Device, View, nullptr);
View = nullptr;
}
if(Image) {
vkDestroyImage(inst->Graphics.Device, Image, nullptr);
Image = nullptr;
}
if(Memory) {
vkFreeMemory(inst->Graphics.Device, Memory, nullptr);
Memory = nullptr;
}
}
void recreate(Vulkan* inst, bool deviceLocal) {
// Уничтожаем то, что не понадобится
if(View) {
vkDestroyImageView(inst->Graphics.Device, View, nullptr);
View = nullptr;
}
if(Image) {
vkDestroyImage(inst->Graphics.Device, Image, nullptr);
Image = nullptr;
}
if(Memory) {
vkFreeMemory(inst->Graphics.Device, Memory, nullptr);
Memory = nullptr;
}
// Создаём атлас
uint32_t size = uint32_t(Size);
VkImageCreateInfo infoImageCreate =
{
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.imageType = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_B8G8R8A8_UNORM,
.extent = { size, size, 1 },
.mipLevels = 1,
.arrayLayers = Depth,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_MAX_ENUM,
.usage =
static_cast<VkImageUsageFlags>(deviceLocal
? VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT
: VK_IMAGE_USAGE_TRANSFER_SRC_BIT),
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = 0,
.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED
};
VkFormatProperties props;
vkGetPhysicalDeviceFormatProperties(inst->Graphics.PhysicalDevice, infoImageCreate.format, &props);
if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)
infoImageCreate.tiling = VK_IMAGE_TILING_OPTIMAL;
else if (props.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)
infoImageCreate.tiling = VK_IMAGE_TILING_LINEAR;
else
vkAssert(!"No support for B8G8R8A8_UNORM as texture image format");
vkAssert(!vkCreateImage(inst->Graphics.Device, &infoImageCreate, nullptr, &Image));
// Выделяем память
VkMemoryRequirements memoryReqs;
vkGetImageMemoryRequirements(inst->Graphics.Device, Image, &memoryReqs);
VkMemoryAllocateInfo memoryAlloc
{
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = nullptr,
.allocationSize = memoryReqs.size,
.memoryTypeIndex = inst->memoryTypeFromProperties(memoryReqs.memoryTypeBits,
deviceLocal
? VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
: VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
)
};
vkAssert(!vkAllocateMemory(inst->Graphics.Device, &memoryAlloc, nullptr, &Memory));
vkAssert(!vkBindImageMemory(inst->Graphics.Device, Image, Memory, 0));
// Порядок пикселей и привязка к картинке
VkImageViewCreateInfo ciView =
{
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.image = Image,
.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = infoImageCreate.format,
.components =
{
VK_COMPONENT_SWIZZLE_B,
VK_COMPONENT_SWIZZLE_G,
VK_COMPONENT_SWIZZLE_R,
VK_COMPONENT_SWIZZLE_A
},
.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }
};
vkAssert(!vkCreateImageView(inst->Graphics.Device, &ciView, nullptr, &View));
}
};
struct HostCache : public VkAtlasInfo {
std::vector<uint32_t*> Layers;
std::vector<VkSubresourceLayout> Layouts;
std::vector<rbp::MaxRectsBinPack> Packs;
void map(Vulkan* inst) {
Layers.resize(Depth);
Layouts.resize(Depth);
for(uint32_t layer = 0; layer < Depth; layer++) {
const VkImageSubresource memorySubres = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .mipLevel = 0, .arrayLayer = layer, };
vkGetImageSubresourceLayout(inst->Graphics.Device, Image, &memorySubres, &Layouts[layer]);
vkAssert(!vkMapMemory(inst->Graphics.Device, Memory, Layouts[layer].offset, Layouts[layer].size, 0, (void**) &Layers[layer]));
}
}
void unMap(Vulkan* inst) {
vkUnmapMemory(inst->Graphics.Device, Memory);
Layers.clear();
Layouts.clear();
}
};
HostCache Cache;
static constexpr size_t BackupAtlasCount = 2;
// Атласы, используемые в кадре.
// Изменения пишутся в не используемый в данный момент атлас
// и изменённый атлас становится активным. Новые изменения
// можно писать по прошествии нескольких кадров.
std::vector<VkAtlasInfo> Atlases;
int ActiveAtlas = 0;
}; };
/* /*
Хранит информацию о моделях при различных состояниях нод Хранит информацию о моделях при различных состояниях нод
*/ */
@@ -904,7 +714,23 @@ public:
continue; continue;
} }
Nodestates.insert({key, std::move(nodestate)}); Nodestates.insert_or_assign(key, std::move(nodestate));
}
if(!changedModels.empty()) {
std::unordered_set<AssetsModel> changed;
changed.reserve(changedModels.size());
for(AssetsModel modelId : changedModels)
changed.insert(modelId);
for(const auto& [nodestateId, nodestate] : Nodestates) {
for(AssetsModel modelId : nodestate.LocalToModel) {
if(changed.contains(modelId)) {
result.push_back(nodestateId);
break;
}
}
}
} }
std::sort(result.begin(), result.end()); std::sort(result.begin(), result.end());
@@ -922,19 +748,15 @@ public:
if(iterNodestate == Nodestates.end()) if(iterNodestate == Nodestates.end())
return {}; return {};
std::vector<uint16_t> routes = iterNodestate->second.getModelsForState(statesInfo, states); PreparedNodeState& nodestate = iterNodestate->second;
std::vector<uint16_t> routes = nodestate.getModelsForState(statesInfo, states);
std::vector<std::vector<std::pair<float, std::unordered_map<EnumFace, std::vector<NodeVertexStatic>>>>> result; std::vector<std::vector<std::pair<float, std::unordered_map<EnumFace, std::vector<NodeVertexStatic>>>>> result;
std::unordered_map<TexturePipeline, uint16_t> pipelineResolveCache; std::unordered_map<TexturePipeline, uint16_t> pipelineResolveCache;
for(uint16_t routeId : routes) { auto appendModel = [&](AssetsModel modelId, const std::vector<Transformation>& transforms, std::unordered_map<EnumFace, std::vector<NodeVertexStatic>>& out) {
std::vector<std::pair<float, std::unordered_map<EnumFace, std::vector<NodeVertexStatic>>>> routeModels; ModelProvider::Model model = MP.getModel(modelId);
const auto& route = iterNodestate->second.Routes[routeId]; Transformations trf{transforms};
for(const auto& [w, m] : route.second) {
if(const PreparedNodeState::Model* ptr = std::get_if<PreparedNodeState::Model>(&m)) {
ModelProvider::Model model = MP.getModel(ptr->Id);
Transformations trf(ptr->Transforms);
std::unordered_map<EnumFace, std::vector<NodeVertexStatic>> out;
for(auto& [l, r] : model.Vertecies) { for(auto& [l, r] : model.Vertecies) {
trf.apply(r); trf.apply(r);
@@ -943,12 +765,12 @@ public:
for(const Vertex& v : r) { for(const Vertex& v : r) {
NodeVertexStatic vert; NodeVertexStatic vert;
vert.FX = (v.Pos.x+0.5)*64+224; vert.FX = (v.Pos.x+0.5f)*64+224;
vert.FY = (v.Pos.y+0.5)*64+224; vert.FY = (v.Pos.y+0.5f)*64+224;
vert.FZ = (v.Pos.z+0.5)*64+224; vert.FZ = (v.Pos.z+0.5f)*64+224;
vert.TU = std::clamp<int32_t>(v.UV.x * (1 << 16), 0, (1 << 16)); vert.TU = std::clamp<int32_t>(v.UV.x * (1 << 16), 0, (1 << 16) - 1);
vert.TV = std::clamp<int32_t>(v.UV.y * (1 << 16), 0, (1 << 16)); vert.TV = std::clamp<int32_t>(v.UV.y * (1 << 16), 0, (1 << 16) - 1);
const TexturePipeline& pipe = model.TextureMap[model.TextureKeys[v.TexId]]; const TexturePipeline& pipe = model.TextureMap[model.TextureKeys[v.TexId]];
if(auto iterPipe = pipelineResolveCache.find(pipe); iterPipe != pipelineResolveCache.end()) { if(auto iterPipe = pipelineResolveCache.find(pipe); iterPipe != pipelineResolveCache.end()) {
@@ -961,12 +783,43 @@ public:
out[l].push_back(vert); out[l].push_back(vert);
} }
} }
};
auto resolveModelId = [&](uint16_t localId, AssetsModel& outId) -> bool {
if(localId >= nodestate.LocalToModel.size())
return false;
outId = nodestate.LocalToModel[localId];
return true;
};
for(uint16_t routeId : routes) {
if(routeId >= nodestate.Routes.size())
continue;
std::vector<std::pair<float, std::unordered_map<EnumFace, std::vector<NodeVertexStatic>>>> routeModels;
const auto& route = nodestate.Routes[routeId];
for(const auto& [w, m] : route.second) {
std::unordered_map<EnumFace, std::vector<NodeVertexStatic>> out;
if(const PreparedNodeState::Model* ptr = std::get_if<PreparedNodeState::Model>(&m)) {
AssetsModel modelId;
if(resolveModelId(ptr->Id, modelId))
appendModel(modelId, ptr->Transforms, out);
} else if(const PreparedNodeState::VectorModel* ptr = std::get_if<PreparedNodeState::VectorModel>(&m)) {
for(const auto& sub : ptr->Models) {
AssetsModel modelId;
if(!resolveModelId(sub.Id, modelId))
continue;
std::vector<Transformation> transforms = sub.Transforms;
transforms.insert(transforms.end(), ptr->Transforms.begin(), ptr->Transforms.end());
appendModel(modelId, transforms, out);
}
}
/// TODO: uvlock /// TODO: uvlock
routeModels.emplace_back(w, std::move(out)); routeModels.emplace_back(w, std::move(out));
} }
}
result.push_back(std::move(routeModels)); result.push_back(std::move(routeModels));
} }
@@ -974,6 +827,15 @@ public:
return result; return result;
} }
uint16_t getTextureId(AssetsTexture texId) {
if(texId == 0)
return 0;
TexturePipeline pipe;
pipe.BinTextures.push_back(texId);
return TP.getTextureId(pipe);
}
private: private:
Logger LOG = "Client>NodestateProvider"; Logger LOG = "Client>NodestateProvider";
ModelProvider& MP; ModelProvider& MP;
@@ -1027,6 +889,10 @@ public:
// Меняет количество обрабатывающих потоков // Меняет количество обрабатывающих потоков
void changeThreadsCount(uint8_t threads); void changeThreadsCount(uint8_t threads);
void setNodestateProvider(NodestateProvider* provider) {
NSP = provider;
}
void prepareTickSync() { void prepareTickSync() {
Sync.Stop = true; Sync.Stop = true;
} }
@@ -1051,6 +917,7 @@ private:
} Sync; } Sync;
IServerSession *SS; IServerSession *SS;
NodestateProvider* NSP = nullptr;
std::vector<std::thread> Threads; std::vector<std::thread> Threads;
void run(uint8_t id); void run(uint8_t id);
@@ -1083,23 +950,10 @@ public:
assert(serverSession); assert(serverSession);
CMG.changeThreadsCount(1); CMG.changeThreadsCount(1);
const VkCommandPoolCreateInfo infoCmdPool =
{
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.pNext = nullptr,
.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
.queueFamilyIndex = VkInst->getSettings().QueueGraphics
};
vkAssert(!vkCreateCommandPool(VkInst->Graphics.Device, &infoCmdPool, nullptr, &CMDPool));
} }
~ChunkPreparator() { ~ChunkPreparator() {
CMG.changeThreadsCount(0); CMG.changeThreadsCount(0);
if(CMDPool)
vkDestroyCommandPool(VkInst->Graphics.Device, CMDPool, nullptr);
} }
@@ -1111,7 +965,24 @@ public:
CMG.pushStageTickSync(); CMG.pushStageTickSync();
} }
void setNodestateProvider(NodestateProvider* provider) {
CMG.setNodestateProvider(provider);
}
void tickSync(const TickSyncData& data); void tickSync(const TickSyncData& data);
void notifyGpuFinished() {
resetVertexStaging();
VertexPool_Voxels.notifyGpuFinished();
VertexPool_Nodes.notifyGpuFinished();
IndexPool_Nodes_16.notifyGpuFinished();
IndexPool_Nodes_32.notifyGpuFinished();
}
void flushUploadsAndBarriers(VkCommandBuffer commandBuffer) {
VertexPool_Voxels.flushUploadsAndBarriers(commandBuffer);
VertexPool_Nodes.flushUploadsAndBarriers(commandBuffer);
IndexPool_Nodes_16.flushUploadsAndBarriers(commandBuffer);
IndexPool_Nodes_32.flushUploadsAndBarriers(commandBuffer);
}
// Готовность кадров определяет когда можно удалять ненужные ресурсы, которые ещё используются в рендере // Готовность кадров определяет когда можно удалять ненужные ресурсы, которые ещё используются в рендере
void pushFrame(); void pushFrame();
@@ -1126,7 +997,6 @@ private:
static constexpr uint8_t FRAME_COUNT_RESOURCE_LATENCY = 6; static constexpr uint8_t FRAME_COUNT_RESOURCE_LATENCY = 6;
Vulkan* VkInst; Vulkan* VkInst;
VkCommandPool CMDPool = nullptr;
// Генератор вершин чанков // Генератор вершин чанков
ChunkMeshGenerator CMG; ChunkMeshGenerator CMG;
@@ -1193,8 +1063,10 @@ class VulkanRenderSession : public IRenderSession {
ChunkPreparator CP; ChunkPreparator CP;
ModelProvider MP; ModelProvider MP;
std::unique_ptr<TextureProvider> TP;
std::unique_ptr<NodestateProvider> NSP;
AtlasImage MainTest, LightDummy; AtlasImage LightDummy;
Buffer TestQuad; Buffer TestQuad;
std::optional<Buffer> TestVoxel; std::optional<Buffer> TestVoxel;
@@ -1206,8 +1078,6 @@ class VulkanRenderSession : public IRenderSession {
.binding = 1, .binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, Данные к атласу .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, Данные к атласу
*/ */
VkDescriptorSetLayout MainAtlasDescLayout = VK_NULL_HANDLE;
VkDescriptorSet MainAtlasDescriptor = VK_NULL_HANDLE;
/* /*
.binding = 2, .binding = 2,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, Воксельная карта освещения .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, Воксельная карта освещения
@@ -1232,7 +1102,6 @@ class VulkanRenderSession : public IRenderSession {
NodeStaticOpaquePipeline = VK_NULL_HANDLE, NodeStaticOpaquePipeline = VK_NULL_HANDLE,
NodeStaticTransparentPipeline = VK_NULL_HANDLE; NodeStaticTransparentPipeline = VK_NULL_HANDLE;
std::map<AssetsTexture, uint16_t> ServerToAtlas;
public: public:
WorldPCO PCO; WorldPCO PCO;
@@ -1254,13 +1123,13 @@ public:
} }
void beforeDraw(); void beforeDraw();
void onGpuFinished();
void drawWorld(GlobalTime gTime, float dTime, VkCommandBuffer drawCmd); void drawWorld(GlobalTime gTime, float dTime, VkCommandBuffer drawCmd);
void pushStage(EnumRenderStage stage); void pushStage(EnumRenderStage stage);
static std::vector<VoxelVertexPoint> generateMeshForVoxelChunks(const std::vector<VoxelCube>& cubes); static std::vector<VoxelVertexPoint> generateMeshForVoxelChunks(const std::vector<VoxelCube>& cubes);
private: private:
void updateDescriptor_MainAtlas();
void updateDescriptor_VoxelsLight(); void updateDescriptor_VoxelsLight();
void updateDescriptor_ChunksLight(); void updateDescriptor_ChunksLight();
}; };

View File

@@ -948,8 +948,11 @@ PreparedNodeState::PreparedNodeState(const std::u8string_view data) {
for(int counter4 = 0; counter4 < transformsSize; counter4++) { for(int counter4 = 0; counter4 < transformsSize; counter4++) {
Transformation tr; Transformation tr;
tr.Op = Transformation::EnumTransform(lr.read<uint8_t>()); tr.Op = Transformation::EnumTransform(lr.read<uint8_t>());
tr.Value = lr.read<float>();
mod2.Transforms.push_back(tr); mod2.Transforms.push_back(tr);
} }
mod.Models.push_back(std::move(mod2));
} }
mod.UVLock = lr.read<uint8_t>(); mod.UVLock = lr.read<uint8_t>();
@@ -961,6 +964,7 @@ PreparedNodeState::PreparedNodeState(const std::u8string_view data) {
for(int counter3 = 0; counter3 < transformsSize; counter3++) { for(int counter3 = 0; counter3 < transformsSize; counter3++) {
Transformation tr; Transformation tr;
tr.Op = Transformation::EnumTransform(lr.read<uint8_t>()); tr.Op = Transformation::EnumTransform(lr.read<uint8_t>());
tr.Value = lr.read<float>();
mod.Transforms.push_back(tr); mod.Transforms.push_back(tr);
} }
@@ -976,12 +980,15 @@ PreparedNodeState::PreparedNodeState(const std::u8string_view data) {
for(int counter3 = 0; counter3 < transformsSize; counter3++) { for(int counter3 = 0; counter3 < transformsSize; counter3++) {
Transformation tr; Transformation tr;
tr.Op = Transformation::EnumTransform(lr.read<uint8_t>()); tr.Op = Transformation::EnumTransform(lr.read<uint8_t>());
tr.Value = lr.read<float>();
mod.Transforms.push_back(tr); mod.Transforms.push_back(tr);
} }
variants.emplace_back(weight, std::move(mod)); variants.emplace_back(weight, std::move(mod));
} }
} }
Routes.emplace_back(nodeId, std::move(variants));
} }
lr.checkUnreaded(); lr.checkUnreaded();
@@ -1088,9 +1095,9 @@ uint16_t PreparedNodeState::parseCondition(const std::string_view expression) {
char c = expression[pos]; char c = expression[pos];
// Числа // Числа
if(std::isdigit(c)) { if(std::isdigit(static_cast<unsigned char>(c))) {
ssize_t npos = pos; ssize_t npos = pos;
for(; npos < expression.size() && std::isdigit(expression[npos]); npos++); for(; npos < expression.size() && std::isdigit(static_cast<unsigned char>(expression[npos])); npos++);
int value; int value;
std::string_view value_view = expression.substr(pos, npos-pos); std::string_view value_view = expression.substr(pos, npos-pos);
auto [partial_ptr, partial_ec] = std::from_chars(value_view.data(), value_view.data() + value_view.size(), value); auto [partial_ptr, partial_ec] = std::from_chars(value_view.data(), value_view.data() + value_view.size(), value);
@@ -1102,15 +1109,20 @@ uint16_t PreparedNodeState::parseCondition(const std::string_view expression) {
} }
tokens.push_back(value); tokens.push_back(value);
pos = npos - 1;
continue; continue;
} }
// Переменные // Переменные
if(std::isalpha(c) || c == ':') { if(std::isalpha(static_cast<unsigned char>(c)) || c == '_' || c == ':') {
ssize_t npos = pos; ssize_t npos = pos;
for(; npos < expression.size() && std::isalpha(expression[npos]); npos++); for(; npos < expression.size(); npos++) {
char ch = expression[npos];
if(!std::isalnum(static_cast<unsigned char>(ch)) && ch != '_' && ch != ':')
break;
}
std::string_view value = expression.substr(pos, npos-pos); std::string_view value = expression.substr(pos, npos-pos);
pos += value.size(); pos = npos - 1;
if(value == "true") if(value == "true")
tokens.push_back(1); tokens.push_back(1);
else if(value == "false") else if(value == "false")
@@ -1121,7 +1133,7 @@ uint16_t PreparedNodeState::parseCondition(const std::string_view expression) {
} }
// Двойные операторы // Двойные операторы
if(pos-1 < expression.size()) { if(pos + 1 < expression.size()) {
char n = expression[pos+1]; char n = expression[pos+1];
if(c == '<' && n == '=') { if(c == '<' && n == '=') {
@@ -1145,22 +1157,23 @@ uint16_t PreparedNodeState::parseCondition(const std::string_view expression) {
// Операторы // Операторы
switch(c) { switch(c) {
case '(': tokens.push_back(EnumTokenKind::LParen); case '(': tokens.push_back(EnumTokenKind::LParen); break;
case ')': tokens.push_back(EnumTokenKind::RParen); case ')': tokens.push_back(EnumTokenKind::RParen); break;
case '+': tokens.push_back(EnumTokenKind::Plus); case '+': tokens.push_back(EnumTokenKind::Plus); break;
case '-': tokens.push_back(EnumTokenKind::Minus); case '-': tokens.push_back(EnumTokenKind::Minus); break;
case '*': tokens.push_back(EnumTokenKind::Star); case '*': tokens.push_back(EnumTokenKind::Star); break;
case '/': tokens.push_back(EnumTokenKind::Slash); case '/': tokens.push_back(EnumTokenKind::Slash); break;
case '%': tokens.push_back(EnumTokenKind::Percent); case '%': tokens.push_back(EnumTokenKind::Percent); break;
case '!': tokens.push_back(EnumTokenKind::Not); case '!': tokens.push_back(EnumTokenKind::Not); break;
case '&': tokens.push_back(EnumTokenKind::And); case '&': tokens.push_back(EnumTokenKind::And); break;
case '|': tokens.push_back(EnumTokenKind::Or); case '|': tokens.push_back(EnumTokenKind::Or); break;
case '<': tokens.push_back(EnumTokenKind::LT); case '<': tokens.push_back(EnumTokenKind::LT); break;
case '>': tokens.push_back(EnumTokenKind::GT); case '>': tokens.push_back(EnumTokenKind::GT); break;
} default:
MAKE_ERROR("Недопустимый символ: " << c); MAKE_ERROR("Недопустимый символ: " << c);
} }
continue;
}
for(size_t index = 0; index < tokens.size(); index++) { for(size_t index = 0; index < tokens.size(); index++) {

View File

@@ -499,15 +499,15 @@ AssetsManager::Out_applyResourceChange AssetsManager::applyResourceChange(const
PreparedNodeState nodestate = _nodestate; PreparedNodeState nodestate = _nodestate;
// Ресолвим модели // Ресолвим модели
for(const auto& [lKey, lDomain] : nodestate.LocalToModelKD) { for(const auto& [lDomain, lKey] : nodestate.LocalToModelKD) {
nodestate.LocalToModel.push_back(lock->getId(EnumAssets::Nodestate, lDomain, lKey)); nodestate.LocalToModel.push_back(lock->getId(EnumAssets::Model, lDomain, lKey));
} }
// Сдампим для отправки клиенту (Кеш в пролёте?) // Сдампим для отправки клиенту (Кеш в пролёте?)
Resource res(nodestate.dump()); Resource res(nodestate.dump());
// На оповещение // На оповещение
result.NewOrChange[(int) EnumAssets::Model].push_back({resId, res}); result.NewOrChange[(int) EnumAssets::Nodestate].push_back({resId, res});
// Запись в таблице ресурсов // Запись в таблице ресурсов
data.emplace(ftt, res, domain, key); data.emplace(ftt, res, domain, key);

View File

@@ -258,6 +258,10 @@ public:
std::tuple<AssetsNodestate, std::vector<AssetsModel>, std::vector<AssetsTexture>> std::tuple<AssetsNodestate, std::vector<AssetsModel>, std::vector<AssetsTexture>>
getNodeDependency(const std::string& domain, const std::string& key) getNodeDependency(const std::string& domain, const std::string& key)
{ {
if(domain == "core" && key == "none") {
return {0, {}, {}};
}
auto lock = LocalObj.lock(); auto lock = LocalObj.lock();
AssetsNodestate nodestateId = lock->getId(EnumAssets::Nodestate, domain, key+".json"); AssetsNodestate nodestateId = lock->getId(EnumAssets::Nodestate, domain, key+".json");

View File

@@ -862,7 +862,6 @@ void GameServer::BackingAsyncLua_t::run(int id) {
Pos::bvec64u nodePos(x, y, z); Pos::bvec64u nodePos(x, y, z);
auto &node = out.Nodes[Pos::bvec4u(nodePos >> 4).pack()][Pos::bvec16u(nodePos & 0xf).pack()]; auto &node = out.Nodes[Pos::bvec4u(nodePos >> 4).pack()][Pos::bvec16u(nodePos & 0xf).pack()];
node.NodeId = id; node.NodeId = id;
node.Meta = 0;
if(x == 0 && z == 0) if(x == 0 && z == 0)
node.NodeId = 1; node.NodeId = 1;
@@ -876,7 +875,7 @@ void GameServer::BackingAsyncLua_t::run(int id) {
else if(x == 0 && y == 1) else if(x == 0 && y == 1)
node.NodeId = 0; node.NodeId = 0;
// node.Meta = 0; node.Meta = uint8_t((x + y + z + int(node.NodeId)) & 0x3);
} }
} }
// else { // else {
@@ -1445,12 +1444,7 @@ void GameServer::init(fs::path worldPath) {
{ {
sol::table t = LuaMainState.create_table(); sol::table t = LuaMainState.create_table();
Content.CM.registerBase(EnumDefContent::Node, "test", "test0", t); Content.CM.registerBase(EnumDefContent::Node, "core", "none", t);
Content.CM.registerBase(EnumDefContent::Node, "test", "test1", t);
Content.CM.registerBase(EnumDefContent::Node, "test", "test2", t);
Content.CM.registerBase(EnumDefContent::Node, "test", "test3", t);
Content.CM.registerBase(EnumDefContent::Node, "test", "test4", t);
Content.CM.registerBase(EnumDefContent::Node, "test", "test5", t);
Content.CM.registerBase(EnumDefContent::World, "test", "devel_world", t); Content.CM.registerBase(EnumDefContent::World, "test", "devel_world", t);
} }
@@ -2364,7 +2358,9 @@ void GameServer::stepSyncContent() {
auto region = Expanse.Worlds[0]->Regions.find(rPos); auto region = Expanse.Worlds[0]->Regions.find(rPos);
if(region != Expanse.Worlds[0]->Regions.end()) { if(region != Expanse.Worlds[0]->Regions.end()) {
region->second->Nodes[cPos.pack()][nPos.pack()].NodeId = 4; Node& n = region->second->Nodes[cPos.pack()][nPos.pack()];
n.NodeId = 4;
n.Meta = uint8_t((int(nPos.x) + int(nPos.y) + int(nPos.z)) & 0x3);
region->second->IsChunkChanged_Nodes |= 1ull << cPos.pack(); region->second->IsChunkChanged_Nodes |= 1ull << cPos.pack();
} }
} }
@@ -2379,7 +2375,9 @@ void GameServer::stepSyncContent() {
auto region = Expanse.Worlds[0]->Regions.find(rPos); auto region = Expanse.Worlds[0]->Regions.find(rPos);
if(region != Expanse.Worlds[0]->Regions.end()) { if(region != Expanse.Worlds[0]->Regions.end()) {
region->second->Nodes[cPos.pack()][nPos.pack()].NodeId = 0; Node& n = region->second->Nodes[cPos.pack()][nPos.pack()];
n.NodeId = 0;
n.Meta = 0;
region->second->IsChunkChanged_Nodes |= 1ull << cPos.pack(); region->second->IsChunkChanged_Nodes |= 1ull << cPos.pack();
} }
} }

View File

@@ -16,25 +16,29 @@ layout(push_constant) uniform UniformBufferObject {
// struct NodeVertexStatic { // struct NodeVertexStatic {
// uint32_t // uint32_t
// FX : 9, FY : 9, FZ : 9, // Позиция -224 ~ 288; 64 позиций в одной ноде, 7.5 метров в ряд // FX : 11, FY : 11, N1 : 10, // Позиция, 64 позиции на метр, +3.5м запас
// N1 : 4, // Не занято // FZ : 11, // Позиция
// LS : 1, // Масштаб карты освещения (1м/16 или 1м) // LS : 1, // Масштаб карты освещения (1м/16 или 1м)
// Tex : 18, // Текстура // Tex : 18, // Текстура
// N2 : 14, // Не занято // N2 : 2, // Не занято
// TU : 16, TV : 16; // UV на текстуре // TU : 16, TV : 16; // UV на текстуре
// }; // };
void main() void main()
{ {
uint fx = Vertex.x & 0x7ffu;
uint fy = (Vertex.x >> 11) & 0x7ffu;
uint fz = Vertex.y & 0x7ffu;
vec4 baseVec = ubo.model*vec4( vec4 baseVec = ubo.model*vec4(
float(Vertex.x & 0x1ff) / 64.f - 3.5f, float(fx) / 64.f - 3.5f,
float((Vertex.x >> 9) & 0x1ff) / 64.f - 3.5f, float(fy) / 64.f - 3.5f,
float((Vertex.x >> 18) & 0x1ff) / 64.f - 3.5f, float(fz) / 64.f - 3.5f,
1 1
); );
Geometry.GeoPos = baseVec.xyz; Geometry.GeoPos = baseVec.xyz;
Geometry.Texture = Vertex.y & 0x3ffff; Geometry.Texture = (Vertex.y >> 12) & 0x3ffffu;
Geometry.UV = vec2( Geometry.UV = vec2(
float(Vertex.z & 0xffff) / pow(2, 16), float(Vertex.z & 0xffff) / pow(2, 16),
float((Vertex.z >> 16) & 0xffff) / pow(2, 16) float((Vertex.z >> 16) & 0xffff) / pow(2, 16)

Binary file not shown.

View File

@@ -11,65 +11,36 @@ layout(location = 0) in FragmentObj {
layout(location = 0) out vec4 Frame; layout(location = 0) out vec4 Frame;
struct InfoSubTexture { struct AtlasEntry {
uint Flags; // 1 isExist vec4 UVMinMax;
uint PosXY, WidthHeight; uint Layer;
uint Flags;
uint AnimationFrames_AnimationTimePerFrame; uint _Pad0;
uint _Pad1;
}; };
uniform layout(set = 0, binding = 0) sampler2D MainAtlas; const uint ATLAS_ENTRY_VALID = 1u;
layout(set = 0, binding = 1) readonly buffer MainAtlasLayoutObj {
uint SubsCount;
uint Counter;
uint WidthHeight;
InfoSubTexture SubTextures[]; uniform layout(set = 0, binding = 0) sampler2DArray MainAtlas;
layout(set = 0, binding = 1) readonly buffer MainAtlasLayoutObj {
AtlasEntry Entries[];
} MainAtlasLayout; } MainAtlasLayout;
uniform layout(set = 1, binding = 0) sampler2D LightMap; uniform layout(set = 1, binding = 0) sampler2DArray LightMap;
layout(set = 1, binding = 1) readonly buffer LightMapLayoutObj { layout(set = 1, binding = 1) readonly buffer LightMapLayoutObj {
vec3 Color; vec3 Color;
} LightMapLayout; } LightMapLayout;
vec4 atlasColor(uint texId, vec2 uv) vec4 atlasColor(uint texId, vec2 uv)
{ {
uint flags = (texId & 0xffff0000) >> 16; AtlasEntry entry = MainAtlasLayout.Entries[texId];
texId &= 0xffff; if((entry.Flags & ATLAS_ENTRY_VALID) == 0u)
vec4 color = vec4(uv, 0, 1); return vec4(((int(gl_FragCoord.x / 128) + int(gl_FragCoord.y / 128)) % 2) * vec3(1, 0, 1), 1);
if((flags & (2 | 4)) > 0) vec2 baseUV = vec2(uv.x, 1.0f - uv.y);
{ vec2 atlasUV = mix(entry.UVMinMax.xy, entry.UVMinMax.zw, baseUV);
if((flags & 2) > 0) atlasUV = clamp(atlasUV, entry.UVMinMax.xy, entry.UVMinMax.zw);
color = vec4(1, 1, 1, 1); return texture(MainAtlas, vec3(atlasUV, entry.Layer));
else if((flags & 4) > 0)
{
color = vec4(1);
}
}
else if(texId >= uint(MainAtlasLayout.SubsCount))
return vec4(((int(gl_FragCoord.x / 128) + int(gl_FragCoord.y / 128)) % 2 ) * vec3(0, 1, 1), 1);
else {
InfoSubTexture texInfo = MainAtlasLayout.SubTextures[texId];
if(texInfo.Flags == 0)
return vec4(((int(gl_FragCoord.x / 128) + int(gl_FragCoord.y / 128)) % 2 ) * vec3(1, 0, 1), 1);
uint posX = texInfo.PosXY & 0xffff;
uint posY = (texInfo.PosXY >> 16) & 0xffff;
uint width = texInfo.WidthHeight & 0xffff;
uint height = (texInfo.WidthHeight >> 16) & 0xffff;
uint awidth = MainAtlasLayout.WidthHeight & 0xffff;
uint aheight = (MainAtlasLayout.WidthHeight >> 16) & 0xffff;
if((flags & 1) > 0)
color = texture(MainAtlas, vec2((posX+0.5f+uv.x*(width-1))/awidth, (posY+0.5f+(1-uv.y)*(height-1))/aheight));
else
color = texture(MainAtlas, vec2((posX+uv.x*width)/awidth, (posY+(1-uv.y)*height)/aheight));
}
return color;
} }
vec3 blendOverlay(vec3 base, vec3 blend) { vec3 blendOverlay(vec3 base, vec3 blend) {

View File

@@ -9,9 +9,19 @@ layout(location = 0) in FragmentObj {
layout(location = 0) out vec4 Frame; layout(location = 0) out vec4 Frame;
struct AtlasEntry {
vec4 UVMinMax;
uint Layer;
uint Flags;
uint _Pad0;
uint _Pad1;
};
const uint ATLAS_ENTRY_VALID = 1u;
uniform layout(set = 0, binding = 0) sampler2DArray MainAtlas; uniform layout(set = 0, binding = 0) sampler2DArray MainAtlas;
layout(set = 0, binding = 1) readonly buffer MainAtlasLayoutObj { layout(set = 0, binding = 1) readonly buffer MainAtlasLayoutObj {
vec3 Color; AtlasEntry Entries[];
} MainAtlasLayout; } MainAtlasLayout;
uniform layout(set = 1, binding = 0) sampler2DArray LightMap; uniform layout(set = 1, binding = 0) sampler2DArray LightMap;
@@ -19,6 +29,19 @@ layout(set = 1, binding = 1) readonly buffer LightMapLayoutObj {
vec3 Color; vec3 Color;
} LightMapLayout; } LightMapLayout;
void main() { vec4 atlasColor(uint texId, vec2 uv)
Frame = vec4(Fragment.GeoPos, 1); {
AtlasEntry entry = MainAtlasLayout.Entries[texId];
if((entry.Flags & ATLAS_ENTRY_VALID) == 0u)
return vec4(((int(gl_FragCoord.x / 128) + int(gl_FragCoord.y / 128)) % 2) * vec3(1, 0, 1), 1);
vec2 baseUV = vec2(uv.x, 1.0f - uv.y);
vec2 atlasUV = mix(entry.UVMinMax.xy, entry.UVMinMax.zw, baseUV);
atlasUV = clamp(atlasUV, entry.UVMinMax.xy, entry.UVMinMax.zw);
return texture(MainAtlas, vec3(atlasUV, entry.Layer));
}
void main() {
Frame = atlasColor(Fragment.Texture, Fragment.UV);
Frame.xyz *= max(0.2f, dot(Fragment.Normal, normalize(vec3(0.5, 1, 0.8))));
} }

View File

@@ -9,23 +9,22 @@ layout(location = 0) in FragmentObj {
layout(location = 0) out vec4 Frame; layout(location = 0) out vec4 Frame;
struct InfoSubTexture { struct AtlasEntry {
uint Flags; // 1 isExist vec4 UVMinMax;
uint PosXY, WidthHeight; uint Layer;
uint Flags;
uint AnimationFrames_AnimationTimePerFrame; uint _Pad0;
uint _Pad1;
}; };
uniform layout(set = 0, binding = 0) sampler2D MainAtlas; const uint ATLAS_ENTRY_VALID = 1u;
layout(set = 0, binding = 1) readonly buffer MainAtlasLayoutObj {
uint SubsCount;
uint Counter;
uint WidthHeight;
InfoSubTexture SubTextures[]; uniform layout(set = 0, binding = 0) sampler2DArray MainAtlas;
layout(set = 0, binding = 1) readonly buffer MainAtlasLayoutObj {
AtlasEntry Entries[];
} MainAtlasLayout; } MainAtlasLayout;
uniform layout(set = 1, binding = 0) sampler2D LightMap; uniform layout(set = 1, binding = 0) sampler2DArray LightMap;
layout(set = 1, binding = 1) readonly buffer LightMapLayoutObj { layout(set = 1, binding = 1) readonly buffer LightMapLayoutObj {
vec3 Color; vec3 Color;
} LightMapLayout; } LightMapLayout;
@@ -35,42 +34,14 @@ vec4 atlasColor(uint texId, vec2 uv)
{ {
uv = mod(uv, 1); uv = mod(uv, 1);
uint flags = (texId & 0xffff0000) >> 16; AtlasEntry entry = MainAtlasLayout.Entries[texId];
texId &= 0xffff; if((entry.Flags & ATLAS_ENTRY_VALID) == 0u)
vec4 color = vec4(uv, 0, 1); return vec4(((int(gl_FragCoord.x / 128) + int(gl_FragCoord.y / 128)) % 2) * vec3(1, 0, 1), 1);
if((flags & (2 | 4)) > 0) vec2 baseUV = vec2(uv.x, 1.0f - uv.y);
{ vec2 atlasUV = mix(entry.UVMinMax.xy, entry.UVMinMax.zw, baseUV);
if((flags & 2) > 0) atlasUV = clamp(atlasUV, entry.UVMinMax.xy, entry.UVMinMax.zw);
color = vec4(1, 1, 1, 1); return texture(MainAtlas, vec3(atlasUV, entry.Layer));
else if((flags & 4) > 0)
{
color = vec4(1);
}
}
else if(texId >= uint(MainAtlasLayout.SubsCount))
return vec4(((int(gl_FragCoord.x / 128) + int(gl_FragCoord.y / 128)) % 2 ) * vec3(0, 1, 1), 1);
else {
InfoSubTexture texInfo = MainAtlasLayout.SubTextures[texId];
if(texInfo.Flags == 0)
return vec4(((int(gl_FragCoord.x / 128) + int(gl_FragCoord.y / 128)) % 2 ) * vec3(1, 0, 1), 1);
uint posX = texInfo.PosXY & 0xffff;
uint posY = (texInfo.PosXY >> 16) & 0xffff;
uint width = texInfo.WidthHeight & 0xffff;
uint height = (texInfo.WidthHeight >> 16) & 0xffff;
uint awidth = MainAtlasLayout.WidthHeight & 0xffff;
uint aheight = (MainAtlasLayout.WidthHeight >> 16) & 0xffff;
if((flags & 1) > 0)
color = texture(MainAtlas, vec2((posX+0.5f+uv.x*(width-1))/awidth, (posY+0.5f+(1-uv.y)*(height-1))/aheight));
else
color = texture(MainAtlas, vec2((posX+uv.x*width)/awidth, (posY+(1-uv.y)*height)/aheight));
}
return color;
} }
void main() { void main() {

View File

@@ -9,9 +9,19 @@ layout(location = 0) in Fragment {
layout(location = 0) out vec4 Frame; layout(location = 0) out vec4 Frame;
struct AtlasEntry {
vec4 UVMinMax;
uint Layer;
uint Flags;
uint _Pad0;
uint _Pad1;
};
const uint ATLAS_ENTRY_VALID = 1u;
uniform layout(set = 0, binding = 0) sampler2DArray MainAtlas; uniform layout(set = 0, binding = 0) sampler2DArray MainAtlas;
layout(set = 0, binding = 1) readonly buffer MainAtlasLayoutObj { layout(set = 0, binding = 1) readonly buffer MainAtlasLayoutObj {
vec3 Color; AtlasEntry Entries[];
} MainAtlasLayout; } MainAtlasLayout;
uniform layout(set = 1, binding = 0) sampler2DArray LightMap; uniform layout(set = 1, binding = 0) sampler2DArray LightMap;
@@ -19,6 +29,39 @@ layout(set = 1, binding = 1) readonly buffer LightMapLayoutObj {
vec3 Color; vec3 Color;
} LightMapLayout; } LightMapLayout;
void main() { vec4 atlasColor(uint texId, vec2 uv)
Frame = vec4(1); {
uv = mod(uv, 1);
AtlasEntry entry = MainAtlasLayout.Entries[texId];
if((entry.Flags & ATLAS_ENTRY_VALID) == 0u)
return vec4(((int(gl_FragCoord.x / 128) + int(gl_FragCoord.y / 128)) % 2) * vec3(1, 0, 1), 1);
vec2 baseUV = vec2(uv.x, 1.0f - uv.y);
vec2 atlasUV = mix(entry.UVMinMax.xy, entry.UVMinMax.zw, baseUV);
atlasUV = clamp(atlasUV, entry.UVMinMax.xy, entry.UVMinMax.zw);
return texture(MainAtlas, vec3(atlasUV, entry.Layer));
}
void main() {
vec2 uv;
switch(fragment.Place) {
case 0:
uv = fragment.GeoPos.xz; break;
case 1:
uv = fragment.GeoPos.xy; break;
case 2:
uv = fragment.GeoPos.zy; break;
case 3:
uv = fragment.GeoPos.xz*vec2(-1, -1); break;
case 4:
uv = fragment.GeoPos.xy*vec2(-1, 1); break;
case 5:
uv = fragment.GeoPos.zy*vec2(-1, 1); break;
default:
uv = vec2(0);
}
Frame = atlasColor(fragment.VoxMTL, uv);
} }

View File

@@ -0,0 +1,81 @@
{
"textures": {
"default": "acacia_planks.png"
},
"cuboids": [
{
"from": [
-0.5,
-0.5,
-0.5
],
"to": [
0.5,
0.5,
0.5
],
"faces": {
"down": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "down"
},
"up": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "up"
},
"north": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "north"
},
"south": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "south"
},
"west": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "west"
},
"east": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "east"
}
}
}
]
}

View File

@@ -0,0 +1,81 @@
{
"textures": {
"default": "frame.png"
},
"cuboids": [
{
"from": [
-0.5,
-0.5,
-0.5
],
"to": [
0.5,
0.5,
0.5
],
"faces": {
"down": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "down"
},
"up": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "up"
},
"north": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "north"
},
"south": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "south"
},
"west": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "west"
},
"east": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "east"
}
}
}
]
}

View File

@@ -0,0 +1,81 @@
{
"textures": {
"default": "grass.png"
},
"cuboids": [
{
"from": [
-0.5,
-0.5,
-0.5
],
"to": [
0.5,
0.5,
0.5
],
"faces": {
"down": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "down"
},
"up": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "up"
},
"north": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "north"
},
"south": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "south"
},
"west": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "west"
},
"east": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "east"
}
}
}
]
}

View File

@@ -0,0 +1,81 @@
{
"textures": {
"default": "jungle_planks.png"
},
"cuboids": [
{
"from": [
-0.5,
-0.5,
-0.5
],
"to": [
0.5,
0.5,
0.5
],
"faces": {
"down": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "down"
},
"up": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "up"
},
"north": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "north"
},
"south": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "south"
},
"west": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "west"
},
"east": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "east"
}
}
}
]
}

View File

@@ -0,0 +1,81 @@
{
"textures": {
"default": "oak_planks.png"
},
"cuboids": [
{
"from": [
-0.5,
-0.5,
-0.5
],
"to": [
0.5,
0.5,
0.5
],
"faces": {
"down": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "down"
},
"up": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "up"
},
"north": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "north"
},
"south": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "south"
},
"west": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "west"
},
"east": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "east"
}
}
}
]
}

View File

@@ -0,0 +1,81 @@
{
"textures": {
"default": "tropical_rainforest_wood.png"
},
"cuboids": [
{
"from": [
-0.5,
-0.5,
-0.5
],
"to": [
0.5,
0.5,
0.5
],
"faces": {
"down": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "down"
},
"up": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "up"
},
"north": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "north"
},
"south": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "south"
},
"west": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "west"
},
"east": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "east"
}
}
}
]
}

View File

@@ -0,0 +1,81 @@
{
"textures": {
"default": "willow_wood.png"
},
"cuboids": [
{
"from": [
-0.5,
-0.5,
-0.5
],
"to": [
0.5,
0.5,
0.5
],
"faces": {
"down": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "down"
},
"up": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "up"
},
"north": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "north"
},
"south": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "south"
},
"west": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "west"
},
"east": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "east"
}
}
}
]
}

View File

@@ -0,0 +1,81 @@
{
"textures": {
"default": "xnether_blue_wood.png"
},
"cuboids": [
{
"from": [
-0.5,
-0.5,
-0.5
],
"to": [
0.5,
0.5,
0.5
],
"faces": {
"down": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "down"
},
"up": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "up"
},
"north": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "north"
},
"south": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "south"
},
"west": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "west"
},
"east": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "east"
}
}
}
]
}

View File

@@ -0,0 +1,81 @@
{
"textures": {
"default": "xnether_purple_wood.png"
},
"cuboids": [
{
"from": [
-0.5,
-0.5,
-0.5
],
"to": [
0.5,
0.5,
0.5
],
"faces": {
"down": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "down"
},
"up": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "up"
},
"north": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "north"
},
"south": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "south"
},
"west": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "west"
},
"east": {
"uv": [
0,
0,
1,
1
],
"texture": "default",
"cullface": "east"
}
}
}
]
}

View File

@@ -0,0 +1,14 @@
{
"meta==0": {
"model": "node/grass.json"
},
"meta==1": {
"model": "node/oak_planks.json"
},
"meta==2": {
"model": "node/jungle_planks.json"
},
"meta==3": {
"model": "node/acacia_planks.json"
}
}

View File

@@ -0,0 +1,14 @@
{
"meta==0": {
"model": "node/tropical_rainforest_wood.json"
},
"meta==1": {
"model": "node/willow_wood.json"
},
"meta==2": {
"model": "node/xnether_blue_wood.json"
},
"meta==3": {
"model": "node/xnether_purple_wood.json"
}
}

View File

@@ -0,0 +1,14 @@
{
"meta==0": {
"model": "node/frame.json"
},
"meta==1": {
"model": "node/grass.json"
},
"meta==2": {
"model": "node/oak_planks.json"
},
"meta==3": {
"model": "node/acacia_planks.json"
}
}

View File

@@ -0,0 +1,14 @@
{
"meta==0": {
"model": "node/jungle_planks.json"
},
"meta==1": {
"model": "node/tropical_rainforest_wood.json"
},
"meta==2": {
"model": "node/willow_wood.json"
},
"meta==3": {
"model": "node/xnether_blue_wood.json"
}
}

View File

@@ -0,0 +1,14 @@
{
"meta==0": {
"model": "node/oak_planks.json"
},
"meta==1": {
"model": "node/jungle_planks.json"
},
"meta==2": {
"model": "node/acacia_planks.json"
},
"meta==3": {
"model": "node/willow_wood.json"
}
}

View File

@@ -0,0 +1,14 @@
{
"meta==0": {
"model": "node/grass.json"
},
"meta==1": {
"model": "node/frame.json"
},
"meta==2": {
"model": "node/xnether_purple_wood.json"
},
"meta==3": {
"model": "node/tropical_rainforest_wood.json"
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 138 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 KiB

98
mods/test/init.lua Normal file
View File

@@ -0,0 +1,98 @@
-- parent = default:air
--
-- hasHalfTransparency
-- collideBox = {}
-- plantLike = {}
-- nodebox = {}
local node_template = {
parent = "default:normal" or node_template,
render = {
has_half_transparency = false
},
collision = {
},
events = {
},
node_advancement_factory = function(world_id, node_pos)
local node_advancement = {
onLoad = function(data)
end,
onSave = function()
return {}
end
}
return node_advancement
end
}
local instance = {}
--[[
Движок автоматически подгружает ассеты из папки assets
В этом методе можно зарегистрировать ассеты из иных источников
Состояния нод, частицы, анимации, модели, текстуры, звуки, шрифты
]]--
function instance.assetsInit()
end
--[[
*preInit. События для регистрации определений игрового контента
Ноды, воксели, миры, порталы, сущности, предметы
]]--
function instance.lowPreInit()
end
--[[
До вызова preInit будет выполнена регистрация
контента из файлов в папке content
]]--
function instance.preInit()
local node_air = {}
node_air.hasHalfTransparency = false
node_air.collideBox = nil
node_air.render = nil
core.register_node('test0', {})
core.register_node('test1', {})
core.register_node('test2', {})
core.register_node('test3', {})
core.register_node('test4', {})
core.register_node('test5', {})
end
function instance.highPreInit()
end
--[[
На этом этапе можно наложить изменения
на зарегистрированный другими модами контент
]]--
function instance.init()
end
function instance.postInit()
end
function instance.preDeInit()
end
function instance.deInit()
end
function instance.postDeInit()
core.unregister_node('test0')
core.unregister_node('test1')
core.unregister_node('test2')
core.unregister_node('test3')
core.unregister_node('test4')
core.unregister_node('test5')
end
return instance

9
mods/test/mod.json Normal file
View File

@@ -0,0 +1,9 @@
{
"id": "test",
"name": "Test Mod",
"description": "Это тестовый мод",
"depends": [],
"optional_depends": [],
"author": "DrSocalkwe3n",
"version": [0, 0, 0, 1]
}