// Copyright (c) 2018 Martyn Afford // Licensed under the MIT licence #ifndef SHA2_HPP #define SHA2_HPP #include #include #include namespace sha2 { template using hash_array = std::array; using sha224_hash = hash_array<28>; using sha256_hash = hash_array<32>; using sha384_hash = hash_array<48>; using sha512_hash = hash_array<64>; // SHA-2 uses big-endian integers. inline void write_u32(uint8_t* dest, uint32_t x) { *dest++ = (x >> 24) & 0xff; *dest++ = (x >> 16) & 0xff; *dest++ = (x >> 8) & 0xff; *dest++ = (x >> 0) & 0xff; } inline void write_u64(uint8_t* dest, uint64_t x) { *dest++ = (x >> 56) & 0xff; *dest++ = (x >> 48) & 0xff; *dest++ = (x >> 40) & 0xff; *dest++ = (x >> 32) & 0xff; *dest++ = (x >> 24) & 0xff; *dest++ = (x >> 16) & 0xff; *dest++ = (x >> 8) & 0xff; *dest++ = (x >> 0) & 0xff; } inline uint32_t read_u32(const uint8_t* src) { return static_cast((src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3]); } inline uint64_t read_u64(const uint8_t* src) { uint64_t upper = read_u32(src); uint64_t lower = read_u32(src + 4); return ((upper & 0xffffffff) << 32) | (lower & 0xffffffff); } // A compiler-recognised implementation of rotate right that avoids the // undefined behaviour caused by shifting by the number of bits of the left-hand // type. See John Regehr's article https://blog.regehr.org/archives/1063 inline uint32_t ror(uint32_t x, uint32_t n) { return (x >> n) | (x << (-n & 31)); } inline uint64_t ror(uint64_t x, uint64_t n) { return (x >> n) | (x << (-n & 63)); } // Utility function to truncate larger hashes. Assumes appropriate hash types // (i.e., hash_array) for type T. template inline T truncate(const hash_array& hash) { T result; memcpy(result.data(), hash.data(), sizeof(result)); return result; } // Both sha256_impl and sha512_impl are used by sha224/sha256 and // sha384/sha512 respectively, avoiding duplication as only the initial hash // values (s) and output hash length change. inline sha256_hash sha256_impl(const uint32_t* s, const uint8_t* data, uint64_t length) { static_assert(sizeof(uint32_t) == 4, "sizeof(uint32_t) must be 4"); static_assert(sizeof(uint64_t) == 8, "sizeof(uint64_t) must be 8"); constexpr size_t chunk_bytes = 64; const uint64_t bit_length = length * 8; uint32_t hash[8] = {s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7]}; constexpr uint32_t k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}; auto chunk = [&hash, &k](const uint8_t* chunk_data) { uint32_t w[64] = {0}; for (int i = 0; i != 16; ++i) { w[i] = read_u32(&chunk_data[i * 4]); } for (int i = 16; i != 64; ++i) { auto w15 = w[i - 15]; auto w2 = w[i - 2]; auto s0 = ror(w15, 7) ^ ror(w15, 18) ^ (w15 >> 3); auto s1 = ror(w2, 17) ^ ror(w2, 19) ^ (w2 >> 10); w[i] = w[i - 16] + s0 + w[i - 7] + s1; } auto a = hash[0]; auto b = hash[1]; auto c = hash[2]; auto d = hash[3]; auto e = hash[4]; auto f = hash[5]; auto g = hash[6]; auto h = hash[7]; for (int i = 0; i != 64; ++i) { auto s1 = ror(e, 6) ^ ror(e, 11) ^ ror(e, 25); auto ch = (e & f) ^ (~e & g); auto temp1 = h + s1 + ch + k[i] + w[i]; auto s0 = ror(a, 2) ^ ror(a, 13) ^ ror(a, 22); auto maj = (a & b) ^ (a & c) ^ (b & c); auto temp2 = s0 + maj; h = g; g = f; f = e; e = d + temp1; d = c; c = b; b = a; a = temp1 + temp2; } hash[0] += a; hash[1] += b; hash[2] += c; hash[3] += d; hash[4] += e; hash[5] += f; hash[6] += g; hash[7] += h; }; while (length >= chunk_bytes) { chunk(data); data += chunk_bytes; length -= chunk_bytes; } { std::array buf; memcpy(buf.data(), data, length); auto i = length; buf[i++] = 0x80; if (i > chunk_bytes - 8) { while (i < chunk_bytes) { buf[i++] = 0; } chunk(buf.data()); i = 0; } while (i < chunk_bytes - 8) { buf[i++] = 0; } write_u64(&buf[i], bit_length); chunk(buf.data()); } sha256_hash result; for (uint8_t i = 0; i != 8; ++i) { write_u32(&result[i * 4], hash[i]); } return result; } inline sha512_hash sha512_impl(const uint64_t* s, const uint8_t* data, uint64_t length) { static_assert(sizeof(uint32_t) == 4, "sizeof(uint32_t) must be 4"); static_assert(sizeof(uint64_t) == 8, "sizeof(uint64_t) must be 8"); constexpr size_t chunk_bytes = 128; const uint64_t bit_length_low = length << 3; const uint64_t bit_length_high = length >> (64 - 3); uint64_t hash[8] = {s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7]}; constexpr uint64_t k[80] = { 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec, 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817}; auto chunk = [&hash, &k](const uint8_t* chunk_data) { uint64_t w[80] = {0}; for (int i = 0; i != 16; ++i) { w[i] = read_u64(&chunk_data[i * 8]); } for (int i = 16; i != 80; ++i) { auto w15 = w[i - 15]; auto w2 = w[i - 2]; auto s0 = ror(w15, 1) ^ ror(w15, 8) ^ (w15 >> 7); auto s1 = ror(w2, 19) ^ ror(w2, 61) ^ (w2 >> 6); w[i] = w[i - 16] + s0 + w[i - 7] + s1; } auto a = hash[0]; auto b = hash[1]; auto c = hash[2]; auto d = hash[3]; auto e = hash[4]; auto f = hash[5]; auto g = hash[6]; auto h = hash[7]; for (int i = 0; i != 80; ++i) { auto s1 = ror(e, 14) ^ ror(e, 18) ^ ror(e, 41); auto ch = (e & f) ^ (~e & g); auto temp1 = h + s1 + ch + k[i] + w[i]; auto s0 = ror(a, 28) ^ ror(a, 34) ^ ror(a, 39); auto maj = (a & b) ^ (a & c) ^ (b & c); auto temp2 = s0 + maj; h = g; g = f; f = e; e = d + temp1; d = c; c = b; b = a; a = temp1 + temp2; } hash[0] += a; hash[1] += b; hash[2] += c; hash[3] += d; hash[4] += e; hash[5] += f; hash[6] += g; hash[7] += h; }; while (length >= chunk_bytes) { chunk(data); data += chunk_bytes; length -= chunk_bytes; } { std::array buf; memcpy(buf.data(), data, length); auto i = length; buf[i++] = 0x80; if (i > chunk_bytes - 16) { while (i < chunk_bytes) { buf[i++] = 0; } chunk(buf.data()); i = 0; } while (i < chunk_bytes - 16) { buf[i++] = 0; } write_u64(&buf[i + 0], bit_length_high); write_u64(&buf[i + 8], bit_length_low); chunk(buf.data()); } sha512_hash result; for (uint8_t i = 0; i != 8; ++i) { write_u64(&result[i * 8], hash[i]); } return result; } inline sha224_hash sha224(const uint8_t* data, uint64_t length) { // Second 32 bits of the fractional parts of the square roots of the ninth // through sixteenth primes 23..53 const uint32_t initial_hash_values[8] = {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4}; auto hash = sha256_impl(initial_hash_values, data, length); return truncate(hash); } inline sha256_hash sha256(const uint8_t* data, uint64_t length) { // First 32 bits of the fractional parts of the square roots of the first // eight primes 2..19: const uint32_t initial_hash_values[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; return sha256_impl(initial_hash_values, data, length); } inline sha384_hash sha384(const uint8_t* data, uint64_t length) { const uint64_t initial_hash_values[8] = {0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17, 0x152fecd8f70e5939, 0x67332667ffc00b31, 0x8eb44a8768581511, 0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4}; auto hash = sha512_impl(initial_hash_values, data, length); return truncate(hash); } inline sha512_hash sha512(const uint8_t* data, uint64_t length) { const uint64_t initial_hash_values[8] = {0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179}; return sha512_impl(initial_hash_values, data, length); } // SHA-512/t is a truncated version of SHA-512, where the result is truncated // to t bits (in this implementation, t must be a multiple of eight). The two // primariy variants of this are SHA-512/224 and SHA-512/256, both of which are // provided through explicit functions (sha512_224 and sha512_256) below this // function. On 64-bit platforms, SHA-512, and correspondingly SHA-512/t, // should give a significant performance improvement over SHA-224 and SHA-256 // due to the doubled block size. template inline hash_array sha512_t(const uint8_t* data, uint64_t length) { static_assert(bits % 8 == 0, "Bits must be a multiple of 8 (i.e., bytes)."); static_assert(0 < bits && bits <= 512, "Bits must be between 8 and 512"); static_assert(bits != 384, "NIST explicitly denies 384 bits, use SHA-384."); const uint64_t modified_initial_hash_values[8] = { 0x6a09e667f3bcc908 ^ 0xa5a5a5a5a5a5a5a5, 0xbb67ae8584caa73b ^ 0xa5a5a5a5a5a5a5a5, 0x3c6ef372fe94f82b ^ 0xa5a5a5a5a5a5a5a5, 0xa54ff53a5f1d36f1 ^ 0xa5a5a5a5a5a5a5a5, 0x510e527fade682d1 ^ 0xa5a5a5a5a5a5a5a5, 0x9b05688c2b3e6c1f ^ 0xa5a5a5a5a5a5a5a5, 0x1f83d9abfb41bd6b ^ 0xa5a5a5a5a5a5a5a5, 0x5be0cd19137e2179 ^ 0xa5a5a5a5a5a5a5a5}; // The SHA-512/t generation function uses a modified SHA-512 on the string // "SHA-512/t" where t is the number of bits. The modified SHA-512 operates // like the original but uses different initial hash values, as seen above. // The hash is then used for the initial hash values sent to the original // SHA-512. The sha512_224 and sha512_256 functions have this precalculated. constexpr int buf_size = 12; uint8_t buf[buf_size]; auto buf_ptr = reinterpret_cast(buf); auto len = snprintf(buf_ptr, buf_size, "SHA-512/%d", bits); auto ulen = static_cast(len); auto initial8 = sha512_impl(modified_initial_hash_values, buf, ulen); // To read the hash bytes back into 64-bit integers, we must convert back // from big-endian. uint64_t initial64[8]; for (uint8_t i = 0; i != 8; ++i) { initial64[i] = read_u64(&initial8[i * 8]); } // Once the initial hash is computed, use regular SHA-512 and copy the // appropriate number of bytes. auto hash = sha512_impl(initial64, data, length); return truncate>(hash); } // It is preferable to use either sha512_224 or sha512_256 in place of // sha512_t<224> or sha512_t<256> for better performance (as the initial // hashes are precalculated), for slightly less syntactic noise and for // consistency with the other functions. inline sha224_hash sha512_224(const uint8_t* data, uint64_t length) { // Precalculated initial hash (The hash of "SHA-512/224" using the modified // SHA-512 generation function, described above in sha512_t). const uint64_t initial_hash_values[8] = {0x8c3d37c819544da2, 0x73e1996689dcd4d6, 0x1dfab7ae32ff9c82, 0x679dd514582f9fcf, 0x0f6d2b697bd44da8, 0x77e36f7304c48942, 0x3f9d85a86a1d36c8, 0x1112e6ad91d692a1}; auto hash = sha512_impl(initial_hash_values, data, length); return truncate(hash); } inline sha256_hash sha512_256(const uint8_t* data, uint64_t length) { // Precalculated initial hash (The hash of "SHA-512/256" using the modified // SHA-512 generation function, described above in sha512_t). const uint64_t initial_hash_values[8] = {0x22312194fc2bf72c, 0x9f555fa3c84c64c2, 0x2393b86b6f53b151, 0x963877195940eabd, 0x96283ee2a88effe3, 0xbe5e1e2553863992, 0x2b0199fc2c85b8aa, 0x0eb72ddc81c52ca2}; auto hash = sha512_impl(initial_hash_values, data, length); return truncate(hash); } } // sha2 namespace #endif /* SHA2_HPP */