Files
LuaVox/Src/sha2.hpp
2025-07-14 09:50:26 +06:00

500 lines
17 KiB
C++

// Copyright (c) 2018 Martyn Afford
// Licensed under the MIT licence
#ifndef SHA2_HPP
#define SHA2_HPP
#include <array>
#include <cstdint>
#include <cstring>
namespace sha2 {
template <size_t N>
using hash_array = std::array<uint8_t, N>;
using sha224_hash = hash_array<28>;
using sha256_hash = hash_array<32>;
using sha384_hash = hash_array<48>;
using sha512_hash = hash_array<64>;
// SHA-2 uses big-endian integers.
inline void
write_u32(uint8_t* dest, uint32_t x)
{
*dest++ = (x >> 24) & 0xff;
*dest++ = (x >> 16) & 0xff;
*dest++ = (x >> 8) & 0xff;
*dest++ = (x >> 0) & 0xff;
}
inline void
write_u64(uint8_t* dest, uint64_t x)
{
*dest++ = (x >> 56) & 0xff;
*dest++ = (x >> 48) & 0xff;
*dest++ = (x >> 40) & 0xff;
*dest++ = (x >> 32) & 0xff;
*dest++ = (x >> 24) & 0xff;
*dest++ = (x >> 16) & 0xff;
*dest++ = (x >> 8) & 0xff;
*dest++ = (x >> 0) & 0xff;
}
inline uint32_t
read_u32(const uint8_t* src)
{
return static_cast<uint32_t>((src[0] << 24) | (src[1] << 16) |
(src[2] << 8) | src[3]);
}
inline uint64_t
read_u64(const uint8_t* src)
{
uint64_t upper = read_u32(src);
uint64_t lower = read_u32(src + 4);
return ((upper & 0xffffffff) << 32) | (lower & 0xffffffff);
}
// A compiler-recognised implementation of rotate right that avoids the
// undefined behaviour caused by shifting by the number of bits of the left-hand
// type. See John Regehr's article https://blog.regehr.org/archives/1063
inline uint32_t
ror(uint32_t x, uint32_t n)
{
return (x >> n) | (x << (-n & 31));
}
inline uint64_t
ror(uint64_t x, uint64_t n)
{
return (x >> n) | (x << (-n & 63));
}
// Utility function to truncate larger hashes. Assumes appropriate hash types
// (i.e., hash_array<N>) for type T.
template <typename T, size_t N>
inline T
truncate(const hash_array<N>& hash)
{
T result;
memcpy(result.data(), hash.data(), sizeof(result));
return result;
}
// Both sha256_impl and sha512_impl are used by sha224/sha256 and
// sha384/sha512 respectively, avoiding duplication as only the initial hash
// values (s) and output hash length change.
inline sha256_hash
sha256_impl(const uint32_t* s, const uint8_t* data, uint64_t length)
{
static_assert(sizeof(uint32_t) == 4, "sizeof(uint32_t) must be 4");
static_assert(sizeof(uint64_t) == 8, "sizeof(uint64_t) must be 8");
constexpr size_t chunk_bytes = 64;
const uint64_t bit_length = length * 8;
uint32_t hash[8] = {s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7]};
constexpr uint32_t k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
auto chunk = [&hash, &k](const uint8_t* chunk_data) {
uint32_t w[64] = {0};
for (int i = 0; i != 16; ++i) {
w[i] = read_u32(&chunk_data[i * 4]);
}
for (int i = 16; i != 64; ++i) {
auto w15 = w[i - 15];
auto w2 = w[i - 2];
auto s0 = ror(w15, 7) ^ ror(w15, 18) ^ (w15 >> 3);
auto s1 = ror(w2, 17) ^ ror(w2, 19) ^ (w2 >> 10);
w[i] = w[i - 16] + s0 + w[i - 7] + s1;
}
auto a = hash[0];
auto b = hash[1];
auto c = hash[2];
auto d = hash[3];
auto e = hash[4];
auto f = hash[5];
auto g = hash[6];
auto h = hash[7];
for (int i = 0; i != 64; ++i) {
auto s1 = ror(e, 6) ^ ror(e, 11) ^ ror(e, 25);
auto ch = (e & f) ^ (~e & g);
auto temp1 = h + s1 + ch + k[i] + w[i];
auto s0 = ror(a, 2) ^ ror(a, 13) ^ ror(a, 22);
auto maj = (a & b) ^ (a & c) ^ (b & c);
auto temp2 = s0 + maj;
h = g;
g = f;
f = e;
e = d + temp1;
d = c;
c = b;
b = a;
a = temp1 + temp2;
}
hash[0] += a;
hash[1] += b;
hash[2] += c;
hash[3] += d;
hash[4] += e;
hash[5] += f;
hash[6] += g;
hash[7] += h;
};
while (length >= chunk_bytes) {
chunk(data);
data += chunk_bytes;
length -= chunk_bytes;
}
{
std::array<uint8_t, chunk_bytes> buf;
memcpy(buf.data(), data, length);
auto i = length;
buf[i++] = 0x80;
if (i > chunk_bytes - 8) {
while (i < chunk_bytes) {
buf[i++] = 0;
}
chunk(buf.data());
i = 0;
}
while (i < chunk_bytes - 8) {
buf[i++] = 0;
}
write_u64(&buf[i], bit_length);
chunk(buf.data());
}
sha256_hash result;
for (uint8_t i = 0; i != 8; ++i) {
write_u32(&result[i * 4], hash[i]);
}
return result;
}
inline sha512_hash
sha512_impl(const uint64_t* s, const uint8_t* data, uint64_t length)
{
static_assert(sizeof(uint32_t) == 4, "sizeof(uint32_t) must be 4");
static_assert(sizeof(uint64_t) == 8, "sizeof(uint64_t) must be 8");
constexpr size_t chunk_bytes = 128;
const uint64_t bit_length_low = length << 3;
const uint64_t bit_length_high = length >> (64 - 3);
uint64_t hash[8] = {s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7]};
constexpr uint64_t k[80] = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,
0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,
0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,
0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,
0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,
0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,
0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,
0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,
0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,
0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,
0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,
0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,
0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
0x5fcb6fab3ad6faec, 0x6c44198c4a475817};
auto chunk = [&hash, &k](const uint8_t* chunk_data) {
uint64_t w[80] = {0};
for (int i = 0; i != 16; ++i) {
w[i] = read_u64(&chunk_data[i * 8]);
}
for (int i = 16; i != 80; ++i) {
auto w15 = w[i - 15];
auto w2 = w[i - 2];
auto s0 = ror(w15, 1) ^ ror(w15, 8) ^ (w15 >> 7);
auto s1 = ror(w2, 19) ^ ror(w2, 61) ^ (w2 >> 6);
w[i] = w[i - 16] + s0 + w[i - 7] + s1;
}
auto a = hash[0];
auto b = hash[1];
auto c = hash[2];
auto d = hash[3];
auto e = hash[4];
auto f = hash[5];
auto g = hash[6];
auto h = hash[7];
for (int i = 0; i != 80; ++i) {
auto s1 = ror(e, 14) ^ ror(e, 18) ^ ror(e, 41);
auto ch = (e & f) ^ (~e & g);
auto temp1 = h + s1 + ch + k[i] + w[i];
auto s0 = ror(a, 28) ^ ror(a, 34) ^ ror(a, 39);
auto maj = (a & b) ^ (a & c) ^ (b & c);
auto temp2 = s0 + maj;
h = g;
g = f;
f = e;
e = d + temp1;
d = c;
c = b;
b = a;
a = temp1 + temp2;
}
hash[0] += a;
hash[1] += b;
hash[2] += c;
hash[3] += d;
hash[4] += e;
hash[5] += f;
hash[6] += g;
hash[7] += h;
};
while (length >= chunk_bytes) {
chunk(data);
data += chunk_bytes;
length -= chunk_bytes;
}
{
std::array<uint8_t, chunk_bytes> buf;
memcpy(buf.data(), data, length);
auto i = length;
buf[i++] = 0x80;
if (i > chunk_bytes - 16) {
while (i < chunk_bytes) {
buf[i++] = 0;
}
chunk(buf.data());
i = 0;
}
while (i < chunk_bytes - 16) {
buf[i++] = 0;
}
write_u64(&buf[i + 0], bit_length_high);
write_u64(&buf[i + 8], bit_length_low);
chunk(buf.data());
}
sha512_hash result;
for (uint8_t i = 0; i != 8; ++i) {
write_u64(&result[i * 8], hash[i]);
}
return result;
}
inline sha224_hash
sha224(const uint8_t* data, uint64_t length)
{
// Second 32 bits of the fractional parts of the square roots of the ninth
// through sixteenth primes 23..53
const uint32_t initial_hash_values[8] = {0xc1059ed8,
0x367cd507,
0x3070dd17,
0xf70e5939,
0xffc00b31,
0x68581511,
0x64f98fa7,
0xbefa4fa4};
auto hash = sha256_impl(initial_hash_values, data, length);
return truncate<sha224_hash>(hash);
}
inline sha256_hash
sha256(const uint8_t* data, uint64_t length)
{
// First 32 bits of the fractional parts of the square roots of the first
// eight primes 2..19:
const uint32_t initial_hash_values[8] = {0x6a09e667,
0xbb67ae85,
0x3c6ef372,
0xa54ff53a,
0x510e527f,
0x9b05688c,
0x1f83d9ab,
0x5be0cd19};
return sha256_impl(initial_hash_values, data, length);
}
inline sha384_hash
sha384(const uint8_t* data, uint64_t length)
{
const uint64_t initial_hash_values[8] = {0xcbbb9d5dc1059ed8,
0x629a292a367cd507,
0x9159015a3070dd17,
0x152fecd8f70e5939,
0x67332667ffc00b31,
0x8eb44a8768581511,
0xdb0c2e0d64f98fa7,
0x47b5481dbefa4fa4};
auto hash = sha512_impl(initial_hash_values, data, length);
return truncate<sha384_hash>(hash);
}
inline sha512_hash
sha512(const uint8_t* data, uint64_t length)
{
const uint64_t initial_hash_values[8] = {0x6a09e667f3bcc908,
0xbb67ae8584caa73b,
0x3c6ef372fe94f82b,
0xa54ff53a5f1d36f1,
0x510e527fade682d1,
0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b,
0x5be0cd19137e2179};
return sha512_impl(initial_hash_values, data, length);
}
// SHA-512/t is a truncated version of SHA-512, where the result is truncated
// to t bits (in this implementation, t must be a multiple of eight). The two
// primariy variants of this are SHA-512/224 and SHA-512/256, both of which are
// provided through explicit functions (sha512_224 and sha512_256) below this
// function. On 64-bit platforms, SHA-512, and correspondingly SHA-512/t,
// should give a significant performance improvement over SHA-224 and SHA-256
// due to the doubled block size.
template <int bits>
inline hash_array<bits / 8>
sha512_t(const uint8_t* data, uint64_t length)
{
static_assert(bits % 8 == 0, "Bits must be a multiple of 8 (i.e., bytes).");
static_assert(0 < bits && bits <= 512, "Bits must be between 8 and 512");
static_assert(bits != 384, "NIST explicitly denies 384 bits, use SHA-384.");
const uint64_t modified_initial_hash_values[8] = {
0x6a09e667f3bcc908 ^ 0xa5a5a5a5a5a5a5a5,
0xbb67ae8584caa73b ^ 0xa5a5a5a5a5a5a5a5,
0x3c6ef372fe94f82b ^ 0xa5a5a5a5a5a5a5a5,
0xa54ff53a5f1d36f1 ^ 0xa5a5a5a5a5a5a5a5,
0x510e527fade682d1 ^ 0xa5a5a5a5a5a5a5a5,
0x9b05688c2b3e6c1f ^ 0xa5a5a5a5a5a5a5a5,
0x1f83d9abfb41bd6b ^ 0xa5a5a5a5a5a5a5a5,
0x5be0cd19137e2179 ^ 0xa5a5a5a5a5a5a5a5};
// The SHA-512/t generation function uses a modified SHA-512 on the string
// "SHA-512/t" where t is the number of bits. The modified SHA-512 operates
// like the original but uses different initial hash values, as seen above.
// The hash is then used for the initial hash values sent to the original
// SHA-512. The sha512_224 and sha512_256 functions have this precalculated.
constexpr int buf_size = 12;
uint8_t buf[buf_size];
auto buf_ptr = reinterpret_cast<char*>(buf);
auto len = snprintf(buf_ptr, buf_size, "SHA-512/%d", bits);
auto ulen = static_cast<uint64_t>(len);
auto initial8 = sha512_impl(modified_initial_hash_values, buf, ulen);
// To read the hash bytes back into 64-bit integers, we must convert back
// from big-endian.
uint64_t initial64[8];
for (uint8_t i = 0; i != 8; ++i) {
initial64[i] = read_u64(&initial8[i * 8]);
}
// Once the initial hash is computed, use regular SHA-512 and copy the
// appropriate number of bytes.
auto hash = sha512_impl(initial64, data, length);
return truncate<hash_array<bits / 8>>(hash);
}
// It is preferable to use either sha512_224 or sha512_256 in place of
// sha512_t<224> or sha512_t<256> for better performance (as the initial
// hashes are precalculated), for slightly less syntactic noise and for
// consistency with the other functions.
inline sha224_hash
sha512_224(const uint8_t* data, uint64_t length)
{
// Precalculated initial hash (The hash of "SHA-512/224" using the modified
// SHA-512 generation function, described above in sha512_t).
const uint64_t initial_hash_values[8] = {0x8c3d37c819544da2,
0x73e1996689dcd4d6,
0x1dfab7ae32ff9c82,
0x679dd514582f9fcf,
0x0f6d2b697bd44da8,
0x77e36f7304c48942,
0x3f9d85a86a1d36c8,
0x1112e6ad91d692a1};
auto hash = sha512_impl(initial_hash_values, data, length);
return truncate<sha224_hash>(hash);
}
inline sha256_hash
sha512_256(const uint8_t* data, uint64_t length)
{
// Precalculated initial hash (The hash of "SHA-512/256" using the modified
// SHA-512 generation function, described above in sha512_t).
const uint64_t initial_hash_values[8] = {0x22312194fc2bf72c,
0x9f555fa3c84c64c2,
0x2393b86b6f53b151,
0x963877195940eabd,
0x96283ee2a88effe3,
0xbe5e1e2553863992,
0x2b0199fc2c85b8aa,
0x0eb72ddc81c52ca2};
auto hash = sha512_impl(initial_hash_values, data, length);
return truncate<sha256_hash>(hash);
}
} // sha2 namespace
#endif /* SHA2_HPP */